SIENET
MagicView 1000 VF50A

DICOM Conformance Statement

Rev. 10.0

12-Dec-2006

Copyright by SIEMENS AG Medical Solutions
This page is intentionally left blank.
This page is intentionally left blank.
Table of Contents

Table of Contents ... 4
List of Figures ... 7
List of Tables ... 8
0 Introduction ... 10
 0.1 Purpose ... 10
 0.2 Definitions, Acronyms and Abbreviations 10
 0.3 References ... 10
1 Implementation Model ... 11
 1.1 Application Data Flow Diagram 11
 1.2 Functional Definitions of Application Entities 15
 1.3 Sequencing of Real World Activities 16
2 Application Entity Specifications 17
 2.1 Association Establishment Policies 19
 2.1.1 General .. 19
 2.1.1.1 Number of Associations 19
 2.1.1.2 Asynchronous Nature 19
 2.1.1.3 Implementation Identifying Information 19
 2.2 Association Initiation Policy 20
 2.2.1 Real-World Activity - Send C-Echo request to a remote node 20
 2.2.1.1 Proposed Presentation Contexts 20
 2.2.2 Real-World Activity - Send Image Objects to a Remote Node 21
 2.2.2.1 Proposed Presentation Contexts 21
 2.2.2.2 SOP Specific Conformance Statement 29
 2.2.2.3 Images resulting from 3D postprocessing 30
 2.2.2.4 Images resulting from Image Composition 31
 2.2.3 Real-World Activity - Send Storage Commitment request to a remote node .32
 2.2.3.1 Proposed Presentation Contexts 32
 2.2.4 Real-World Activity - Query the Image Database of a remote node .33
 2.2.4.1 Proposed Presentation Contexts 33
 2.2.4.2 SOP Specific Conformance Statement 34
 2.2.4.3 Patient Root C-Find SOP Class Specific Conformance Statement34
 2.2.4.3.1 Study Root C-Find SOP Class Specific Conformance Statement36
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.4.3.3</td>
<td>Patient/Study Only C-Find SOP Class Specific Conformance Statement</td>
<td>36</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Real-World Activity - Retrieve Image Objects from a Remote Node</td>
<td>37</td>
</tr>
<tr>
<td>2.2.5.1</td>
<td>Associated Real-World Activity - Retrieve Image Objects from a Remote Node</td>
<td>37</td>
</tr>
<tr>
<td>2.2.5.2</td>
<td>Proposed Presentation Contexts</td>
<td>37</td>
</tr>
<tr>
<td>2.2.5.3</td>
<td>SOP Specific Conformance Statement</td>
<td>38</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Real-World Activity - Send Print Request to a Remote Node</td>
<td>38</td>
</tr>
<tr>
<td>2.2.6.1</td>
<td>Associated Real-World Activity - Send Print Request to a Remote Node</td>
<td>38</td>
</tr>
<tr>
<td>2.2.6.2</td>
<td>Basic Film Session SOP Class</td>
<td>39</td>
</tr>
<tr>
<td>2.2.6.3</td>
<td>Basic Film Box SOP Class</td>
<td>40</td>
</tr>
<tr>
<td>2.2.6.4</td>
<td>Basic Grayscale Image Box SOP Class</td>
<td>40</td>
</tr>
<tr>
<td>2.2.6.5</td>
<td>Printer SOP Class</td>
<td>41</td>
</tr>
<tr>
<td>2.2.6.6</td>
<td>SOP Specific Conformance Statement</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>Association Acceptance Policy</td>
<td>41</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Real-World Activity - Receive C-Echo request</td>
<td>42</td>
</tr>
<tr>
<td>2.3.1.1</td>
<td>Associated Real-World Activity - respond to C-Echo request</td>
<td>42</td>
</tr>
<tr>
<td>2.3.1.2</td>
<td>Accepted Presentation Contexts</td>
<td>42</td>
</tr>
<tr>
<td>2.3.1.3</td>
<td>SOP Specific Conformance to the Verification SOP Class</td>
<td>42</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Real-World Activity - Receive Image Objects from a Remote Node</td>
<td>43</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Associated Real-World Activity - Receive Image Objects from a Remote Node</td>
<td>43</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Accepted Presentation Contexts</td>
<td>43</td>
</tr>
<tr>
<td>2.3.2.3</td>
<td>SOP Specific Conformance Statement</td>
<td>52</td>
</tr>
<tr>
<td>2.3.2.4</td>
<td>Restrictions for 3D postprocessing</td>
<td>54</td>
</tr>
<tr>
<td>2.3.2.5</td>
<td>Restrictions for Image Composition</td>
<td>55</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Real-World Activity - Receive Query Request from a Remote Node</td>
<td>57</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Associated Real-World Activity - respond to C-Find request</td>
<td>57</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Accepted Presentation Contexts</td>
<td>57</td>
</tr>
<tr>
<td>2.3.3.3</td>
<td>SOP Specific Conformance Statement</td>
<td>57</td>
</tr>
<tr>
<td>2.3.3.3.1</td>
<td>Patient Root C-Find SOP Class Specific Conformance Statement</td>
<td>58</td>
</tr>
<tr>
<td>2.3.3.3.2</td>
<td>Study Root C-Find SOP Class Specific Conformance Statement</td>
<td>60</td>
</tr>
<tr>
<td>2.3.3.3.3</td>
<td>Patient/Study Only C-Find SOP Class Specific Conformance Statement</td>
<td>62</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Real-World Activity - Receive Transfer Request from a Remote Node</td>
<td>63</td>
</tr>
<tr>
<td>2.3.4.1</td>
<td>Associated Real-World Activity - initiate image transfer</td>
<td>63</td>
</tr>
<tr>
<td>2.3.4.2</td>
<td>Accepted Presentation Contexts</td>
<td>63</td>
</tr>
<tr>
<td>2.3.4.3</td>
<td>SOP Specific Conformance Statement for SOP class C-Store</td>
<td>63</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Real-World Activity - Receive Storage Commitment Request from a Remote Node</td>
<td>64</td>
</tr>
<tr>
<td>2.3.5.1</td>
<td>Associated Real-World Activity - Response to Storage Commitment Request</td>
<td>64</td>
</tr>
<tr>
<td>2.3.5.2</td>
<td>Accepted presentation Contexts</td>
<td>64</td>
</tr>
<tr>
<td>2.3.5.3</td>
<td>SOP specific Conformance Statement for SOP Class Storage Commitment Push Model SCP</td>
<td>64</td>
</tr>
<tr>
<td>2.3.5.3.1</td>
<td>Operations</td>
<td>64</td>
</tr>
</tbody>
</table>
2.3.5.3.2 Notifications .. 65
2.3.6 Presentation Context Acceptance Criterion 65
2.3.7 Transfer Syntax Selection Policies 65

3 Communication Profiles .. 67
3.1 Supported Communication Stacks 67
3.1.1 OSI Stack .. 67
3.1.2 TCP/IP Stack ... 67
3.1.2.1 Physical Media Support ... 67
3.1.3 Point-to-Point Stack .. 67

4 Privatizations ... 68
4.1 Private SOP Classes ... 68
4.1.1 Mitra Report Management SOP Class 68
4.1.1.1 Real World Activity - Mitra Report Management 68
4.1.1.1.1 Associated Real World Activity - Mitra Report Management 68
4.1.1.1.2 Presentation Context Table - Mitra Report Management 68
4.1.1.1.3 SOP Specific Conformance - Mitra Report Management 69
4.1.2 CSA Non-Image SOP Class ... 70
4.1.2.1 CSA Non-Image IOD Module Table 70
4.1.2.2 CSA Image Header Module ... 71
4.1.2.3 CSA Series Header Module ... 71
4.1.2.4 MEDCOM Header Module ... 72
4.1.2.4.1 MEDCOM History Information 74
4.1.2.5 MEDCOM OOG Module .. 74
4.1.2.6 CSA Non-Image Module .. 75
4.1.2.7 Description of Private Elements 78

4.2 Private Transfer Syntaxes .. 79

5 Configuration ... 80
5.1 AE Title / Presentation Address Mapping 80
5.2 Configurable Parameters .. 80

6 Support of Extended Character Sets 82
List of Figures

Figure 1: Application Data Flow Diagram .. 13
Figure 2: Application Data Flow Diagram .. 14
List of Tables

Table 1: Verification SCU Presentation Contexts of MagicView 1000 .. 20
Table 2: Storage SCU Presentation Contexts of MagicView ... 22
Table 3: Modality and SOP Class UID of 3D result images ... 30
Table 4: Pixel formats of 3D result images ... 31
Table 5: Image Type (0008/0008), value 4 of 3D result images ... 31
Table 6: SOP Class UID of Composed Images ... 32
Table 7: Storage Commitment Push Model SCU Presentation Contexts ... 33
Table 8: Query SCU Presentation Contexts of MagicView 1000 .. 34
Table 9: Supported Patient level attributes .. 34
Table 10: Supported Study level attributes .. 35
Table 11: Supported Series level attributes ... 35
Table 12: Supported Image level attributes .. 36
Table 13: Supported Study level attributes .. 36
Table 14: C-Move SCU Presentation Contexts of MagicView 1000 ... 38
Table 15: MagicView 1000 Print Management SCU Presentation Contexts .. 39
Table 16: Supported N_CREATE attributes .. 39
Table 17: Supported N_CREATE attributes .. 40
Table 18: Supported N_SET attributes .. 40
Table 19: Supported N-GET attributes ... 41
Table 20: Verification SCP Presentation Contexts of MagicView 1000 .. 42
Table 21: Storage SCP Presentation Contexts of MagicView 1000 ... 44
Table 22: Pixel formats ... 53
Table 23: Overlay Attributes .. 54
Table 24: Supported modalities for 3D postprocessing .. 55
Table 25: Supported pixel formats for 3D postprocessing .. 55
Table 26: Attributes for 3D postprocessing ... 55
Table 27: Supported SOP Classes for Image Composition .. 56
Table 28: Supported modalities for Image Composition ... 56
Table 29: Supported pixel formats for Image Composition .. 56
Table 30: Query SCP Presentation Contexts of MagicView 1000 .. 57
Table 31: Supported Patient level attributes .. 58
Table 32: Supported Study level attributes .. 59
Table 33: Supported Series level attributes ... 59
Table 34: Supported Image level attributes .. 60
Table 35: Supported Study level attributes .. 60
Table 36: Retrieve SCP Presentation Contexts of MagicView 1000 ... 63
Table 37: Storage Commitment Push Model SCP Presentation Contexts ... 64
Table 38: Private SOP Classes as SCU .. 68
Table 39: Private SOP Classes as SCP ... 68
Table 40: Presentation Contexts ... 68
Table 41: Mitra Report Information Model Attributes ... 69
Table 42: CSA Non-Image IOD Modules ... 70
Table 43: CSA Image Header Module ... 71
Table 44: CSA Series Header Module ... 71
Table 45: MEDCOM Header Module ... 72
Table 46: MEDCOM History Information ... 74
Table 47: MEDCOM OOG Module ... 74
Table 48: CSA Non-Image Module ... 75
Table 49: Registry of DICOM Data Elements ... 78
0 Introduction

0.1 Purpose

This DICOM Conformance Statement is written according to part PS 3.2 of [1].

This Conformance Statement describes the DICOM interface of the Siemens implementation of a PACS Workstation (SIENET MagicView 1000 U/W Vx50).

The SIENET MagicView 1000 acts as a Service Class Provider (SCP) for Storage Service Class, Storage Commitment Service Class, Verification Service Class and Query/Retrieve Service Class. The SIENET MagicView 1000 acts as a Service Class User (SCU) for Storage Service Class, Storage Commitment Service Class, Verification Service Class, Query/Retrieve Service Class, Mitra Report Management Service Class and Print Management Service Class.

0.2 Definitions, Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Radiology</td>
</tr>
<tr>
<td>AE</td>
<td>DICOM Application Entity</td>
</tr>
<tr>
<td>DBP</td>
<td>DICOM Basic Print User</td>
</tr>
<tr>
<td>DNES</td>
<td>DICOM N-Event Server</td>
</tr>
<tr>
<td>DQRY</td>
<td>DICOM Query Provider</td>
</tr>
<tr>
<td>DQUS</td>
<td>DICOM Query User</td>
</tr>
<tr>
<td>DRCV</td>
<td>DICOM Receiver</td>
</tr>
<tr>
<td>Folder</td>
<td>Siemens specific name for a set of (ACR-NEMA/SPI) images, similar to a</td>
</tr>
<tr>
<td></td>
<td>DICOM Study Component (see also 2.3.2.3)</td>
</tr>
<tr>
<td>FOS</td>
<td>Folder Sender</td>
</tr>
<tr>
<td>IOD</td>
<td>DICOM Information Object Definition</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>PACSnet</td>
<td>Siemens proprietary implementation of the SPI Standard</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
<tr>
<td>PLA</td>
<td>Pacsnet Logical Address (to identify an application on a PACSnet node)</td>
</tr>
<tr>
<td>RIC</td>
<td>RIS Communicator</td>
</tr>
<tr>
<td>SCU</td>
<td>DICOM Service Class User (client using this DICOM service)</td>
</tr>
<tr>
<td>SCP</td>
<td>DICOM Service Class Provider (server providing this service)</td>
</tr>
<tr>
<td>SOP</td>
<td>Service/Object Pair</td>
</tr>
<tr>
<td>UID</td>
<td>Unique IDentifier, string unique in the whole network</td>
</tr>
</tbody>
</table>

0.3 References

[1] Digital Imaging and Communications in Medicine (DICOM), NEMA PS 3.1-15
1 Implementation Model

The Siemens MagicView 1000 supports DICOM Application Entities (AEs) which receive associations for Verification, Storage, Storage Commitment and Query/Retrieve from remote Application Entities.

The Siemens MagicView 1000 initiates associations for Verification and Report Queries as well as for Storage, Storage Commitment, Query/Retrieve and Print of DICOM Composite Information Objects to remote Application Entities.

1.1 Application Data Flow Diagram

DRCV (DICOM Storage and Verification SCP), FOS (DICOM Storage SCU), DQUS (DICOM Query/Retrieve SCU), DQRY (DICOM Query/Retrieve and Verification SCP), DNES (DICOM Storage Commitment SCU and SCP and Verification SCP), RIC (Mitra Report Management SCU), DBP (DICOM Basic Print SCU) and the DICOM Service Tool application (Verification SCP) are applications to handle the DICOM communication for the SIENET MagicView 1000.

These applications (except for the DICOM Service Tool application) are started automatically and will be invoked automatically via network or via the integrated SIENET MagicView 1000 user-interface.

- **Storage SCP:** A remote Application Entity (AE) initiates an association for the DICOM Storage Service Class to the AE of DRCV. Upon acceptance of the association by DRCV the remote AE transmits the DICOM Information Objects to DRCV. After an object has been received, DRCV initiates the transfer of the DICOM objects to the MagicView image database.

- **Storage Commitment SCP:** A remote Application Entity (AE) initiates an association for the DICOM Storage Commitment Service Class to the AE of DNES. Upon acceptance of the association by DNES the remote AE transmits the DICOM Storage Commitment request. DNES queries the database for the existence of the referenced SOP Instances and returns a success status in case all SOP Instances have been successfully stored. This will be done via the same or a new association.

- **Storage SCU:** FOS initiates associations for DICOM Storage Service Class to remote AEs. For each folder being sent to a remote DICOM node a new association to the corresponding remote DICOM AE is initiated. The DICOM objects are sent via that open association.

- **Storage Commitment SCU:** DNES initiates associations for DICOM Storage Commitment requests to a remote AE configured as a DICOM Archive. Storage Commitment will be requested for each set of images that has been sent to this node. The response can be received via the same or via a new association.

- **Query Report SCU:** RIC initiates associations to remote AEs in order to C-Find a report. This functionality is offered as a possibility of fetching reports using a private SOP Class.

- **Query/Retrieve SCU:** DQUS initiates an association to a remote AE and generates a C_FIND request. The responses are displayed. After folder selection by the user, DQUS initiates an association with the remote Retrieve AET. The destination AE is always DRCV.
• **Query/Retrieve SCP:** A remote Application Entity (AE) initiates an association for the DICOM Query/Retrieve Service Class to the AE of DQRY. Upon acceptance of the association by DQRY the remote AE transmits DICOM Query/Retrieve Requests to DQRY.

 - In case of a C-Find Request DQRY queries the image database of MagicView and generates a response for each match. The responses are sent back to the remote AE via DICOM Query Responses.

 - In case of a C-Move Request DQRY queries the image database of MagicView and initiates a Storage Request for each match. A final Retrieve response is sent back to the remote AE.

• **Print SCU:** DBP initiates an association with a remote Application Entity and sends DICOM Basic Print requests.

• **Verification SCU:** The DICOM Service Tool application opens an association to a remote AE and sends a Verification message to verify that the remote application can respond to DICOM messages.

• **Verification SCP:** A remote AE initiates an association for the DICOM Verification Service Class to the AE of DRCV, DNES or DQRY. Upon acceptance of the association the Verification response is sent to the remote AE.
Figure 1: Application Data Flow Diagram

DICOM Standard Interface

- DQUS
 - C-Find
 - C-Move
 - DICOM Query/Retrieve SCP
 - DRCV
 - C-Store
 - DICOM Storage SCU
 - C-Echo
 - C-DNES
 - N-Event
 - N-Action
 - DNES
 - C-Echo
 - N-Action
 - N-Event
 - Report
 - DICOM Storage Commit.
 - SCU
 - Set to ‘committed’ in DB
 - DNES
 - N-Event Report
 - DICOM Storage Commit.
 - SCP

Store Object in Database

Search Object in Database

Object in Database

send

Copyright © Siemens AG Medical Solutions, Health Services, 2005.
All rights reserved. Alle Rechte vorbehalten.
Figure 2: Application Data Flow Diagram

DICOM Standard Interface

- **FOS**
 - C-Store
 - C-Find
 - C-Move
 - C-Echo

- **DQRY**
 - send
 - C-Find
 - C-Move
 - C-Echo

- **RIC**
 - C-Find

- **DBP**
 - N_GET
 - N_SET
 - N_CREATE
 - N_ACTION
 - N_DELETE

- **Print Job Manager**
- **Query Database**
- **Send Object out of Database**
- **Display Report**
- **DICOM Basic Print SCP**
- **Mitra Report Mgmnt. SCP**
- **Verifi- cation SCP**
- **SCU**
 - Retrieve Query/
 - DICOM
 - DICOM Storage SCP

Send Object out of Database

Query Database

Send Object out of Database

Database

Query Database

C-Store

C-Find

C-Move

C-Echo

DICOM Basic Print SCP

Mitra Report Mgmnt. SCP

Verifi- cation SCP

Send Object out of Database

Query Database

Send Object out of Database

Database

Query Database

C-Store

C-Find

C-Move

C-Echo

DICOM Basic Print SCP

Mitra Report Mgmnt. SCP

Verifi- cation SCP
1.2 Functional Definitions of Application Entities

All components of the Siemens DICOM interface (including DRCV, FOS, DQRY, DNES, DQUS, RIC, DBP) except for the DICOM Service Tool application operate as background daemon processes. They are started automatically during system startup and will remain active until shutdown.

- **DRCV** acting as SCP is waiting for association requests from a remote DICOM client. A remote Application Entity (AE) initiates an association for the DICOM Storage Service Class to the AE of DRCV. Upon acceptance of the association by DRCV the remote AE transmits the DICOM Information Objects to DRCV. After an object has been received, DRCV initiates the transfer of the DICOM objects to the MagicView image database. As an SCP for the Verification SOP Class DRCV also responds to Verification requests.

- **DNES** acting as SCU initiates an association to a remote Application Entity and sends an N-ACTION request for Storage Commitment as soon as images have been sent to this node. Upon successful N-EVENT-REPORT request from the remote Application Entity the DICOM Objects will be marked as 'committed’ and can therefore be deleted using the 'Delete if Archived' functionality.

- **FOS** acting as SCU waits for requests from other local daemon processes (i.e. a new folder coming in via PACSnet) or for requests from the workstation’s user. When a request is received, FOS initiates an association with a remote Application Entity. For each folder being sent to a remote DICOM node a new association to the corresponding remote DICOM AE is initiated. The DICOM objects are sent via that open association.

- **DNES** acting as SCP waits for Storage Commitment requests from a remote DICOM Application Entity. As a result DNES sends an N-EVENT_REPORT about success or failure to the Application Entity which issued the Storage Commitment request. As an SCP for the Verification SOP Class DNES also responds to Verification requests.

- **DBP** acting as SCU waits for print requests from the workstation’s user. DBP initiates an association with a remote Application Entity and sends DICOM Basic Print requests.

- **DQRY** acting as SCP waits for association requests from a remote DICOM client. A remote Application Entity (AE) initiates an association for the DICOM Query/Retrieve Service Class to the AE of DQRY. Upon acceptance of the association by DQRY the remote AE transmits DICOM Query/Retrieve Requests to DQRY.
 - In case of a C-Find Request, the DQRY queries the image database of MagicView and generates a response for each match. The responses are sent back to the remote AE via DICOM Query Responses.
 - In case of a C-Move Request, the DQRY queries the image database of MagicView and initiates a Storage request for each match. A final Retrieve response is sent back to the remote AE.

As an SCP for the Verification SOP Class DQRY also responds to Verification requests.

- **DQUS** acting as SCU waits for requests from the workstation’s user. When a request is received, DQUS initiates an association with a remote Application Entity and generates a C_FIND request. The responses are displayed. After folder selection by the user, DQUS initiates an association with the remote Retrieve AET. The destination AE is always DRCV.
RIC acting as SCU waits for requests from other local daemon processes or for requests from the workstation’s user. When a request is received, RIC initiates an association with a remote Application Entity and generates a report C-Find request. The responses are displayed.

- The DICOM Service Tool application acting as SCU opens an association to a remote AE and sends a Verification message to verify that the remote application can respond to DICOM messages.

1.3 Sequencing of Real World Activities

not applicable
2 Application Entity Specifications

Each DICOM application provides one Application Entity. There are Application Entities of FOS, DRCV, DQRY, DNES, DQUS, RIC, DBP and the DICOM Service Tool application.

The Siemens MagicView provides Standard Conformance to the following DICOM Storage SOP Classes as SCU and SCP:

Storage SOP Classes as SCU and SCP:
- CR (Computed Radiography) Image Storage
- CT Image Storage
- Ultrasound Multi-frame Image Storage
- Ultrasound Multi-frame Image Storage - Retired
- Ultrasound Image Storage
- Ultrasound Image Storage - Retired
- MR Image Storage
- SC Image Storage
- NM Image Storage
- X-Ray Radiofluoroscopic Image Storage
- X-Ray Angiographic Image Storage
- RT Image Storage
- PET Image Storage
- Digital X-Ray Image Storage For Presentation
- Digital X-Ray Image Storage For Processing
- Digital Intra-Oral X-Ray Image Storage For Presentation
- Digital Intra-Oral X-Ray Image Storage For Processing
- Digital Mammography X-Ray Image Storage For Presentation
- Digital Mammography X-Ray Image Storage For Processing
- VL Endoscopic Image Storage
- VL Microscopic Image Storage
- VL Slide-Coordinates Microscopic Image Storage
- VL Photographic Image Storage
- Hardcopy Color Image Storage
- Hardcopy Grayscale Image Storage
- RT Dose Storage
- RT Plan Storage
The Siemens MagicView provides Private Conformance to the following DICOM Storage SOP Classes as SCU and SCP:

Storage SOP Classes as SCU and SCP:
- CSA Non-Image Storage

The Siemens MagicView provides Standard Conformance to the following DICOM Query/Retrieve SOP Classes as SCU and SCP:

Query/Retrieve SOP Classes as SCU and SCP:
- Patient Root Query/Retrieve Information Model - FIND
- Patient Root Query/Retrieve Information Model - MOVE
- Study Root Query/Retrieve Information Model - FIND
- Study Root Query/Retrieve Information Model - MOVE
- Patient/Study Only Query/Retrieve Information Model - FIND
- Patient/Study Only Query/Retrieve Information Model - MOVE

The Siemens MagicView provides Standard Conformance to the following DICOM Print Management SOP Classes as SCU:

Print Management SOP Classes as SCU
- Basic Grayscale Print Management

The Siemens MagicView provides Standard Conformance to the following DICOM Verification SOP Classes as SCP:

Verification SOP Classes as SCU and SCP
2.1 Association Establishment Policies

2.1.1 General

The configuration of the Siemens MagicView 1000 defines the Application Entity Titles, the port numbers, the host name and IP address.

2.1.1.1 Number of Associations

FOS initiates several associations at a time, one for each transfer request being processed. By default (see section 5.2 on page 80), there may be up to 5 concurrent associations initiated by FOS at a time, which are processed in parallel.

DRCV, DQRY and DNES accept multiple associations from different remote DICOM AEs at a time (the default value is up to 10 associations at a time). There may be several concurrent associations active and processed in parallel.

DQUS initiates one association at a time for C-Find and C-Move. Multiple C-Move requests may be sent over the same association.

RIC initiates one association at a time for C-Find.

DNES initiates one association at a time for Storage Commitment and accepts multiple associations from different remote DICOM AEs at a time (the default value is up to 10 associations at a time).

DBP initiates one association at a time for DICOM Basic Print.

The DICOM Service Tool application initiates one association at a time for Verification.

2.1.1.2 Asynchronous Nature

This version of the software does not support asynchronous communication (multiple outstanding transactions over a single association).

2.1.1.3 Implementation Identifying Information

The Siemens MagicView software provides an Implementation Class UID of “1.3.12.2.1107.5.8” and an Implementation Version Name of SNKIT_3.0”.

2.2 Association Initiation Policy

The Siemens MagicView attempts to initiate a new association for

- DIMSE-C-ECHO
- DIMSE-C-STORE
- DIMSE-C-FIND
- DIMSE-C-MOVE
- DIMSE-N-ACTION, DIMSE-N-SET, DIMSE-N-CREATE, DIMSE-N-GET, DIMSE-N-DELETE, DIMSE-N-EVENT-REPORT

service operations.

2.2.1 Real-World Activity - Send C-Echo request to a remote node

2.2.1.1 Associated Real-World Activity - Send C-Echo request to a remote node

The associated Real-World activity is a C-Echo request initiated by the DICOM Service Tool application. If the process successfully establishes an association to a remote Application Entity, it will send the C-Echo request via the open association to verify that the remote Application Entity is able to respond to DICOM messages.

2.2.1.1.1 Proposed Presentation Contexts

The Siemens MagicView 1000 will propose the following Presentation Contexts for Verification:

<table>
<thead>
<tr>
<th>Presentation Context Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1: Verification SCU Presentation Contexts of MagicView 1000</td>
</tr>
<tr>
<td>Abstract Syntax</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Verification Service Class</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
2.2.2 Real-World Activity - Send Image Objects to a Remote Node

2.2.2.1 Associated Real-World Activity - Send Image Objects to a Remote Node

The associated Real-World activity is a C-STORE request initiated by the user of the workstation or by internal daemon processes. If FOS successfully establishes an association to a remote Application Entity, it will transfer each image of the folder one after another via the open association. If the C-STORE response from the remote Application contains a status other than Success, the association is aborted. After a configurable time period (see 5.2), the transfer of the folder is started again. If the retry (3 times) also fails, the foldername will be logged in a history queue with status “Failed”. Each folder is sent over one association.

The DICOM targets are configured at configuration time.

2.2.2.2 Proposed Presentation Contexts

The Siemens MagicView will propose Presentation Contexts as shown in the following table.
Table 2: Storage SCU Presentation Contexts of MagicView

<table>
<thead>
<tr>
<th>Presentation Context Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract Syntax</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>CR Image Storage</td>
</tr>
<tr>
<td>Digital X-Ray Image Storage - For Presentation</td>
</tr>
<tr>
<td>Digital X-Ray Image Storage - For Processing</td>
</tr>
<tr>
<td>Digital Mammography Image Storage - For Presentation</td>
</tr>
</tbody>
</table>
DICOM Implicit VR Little Endian Transfer Syntax,
- DICOM Explicit VR Big Endian Transfer Syntax,
- DICOM Explicit VR Little Endian Transfer Syntax

JPEG Baseline (Process 1) Lossy
- JPEG Extended (Process 2 und 4) Lossy
- JPEG Lossless, Non-Hierarchical (Process 14)

Digital Mammography Image Storage - For Processing

<table>
<thead>
<tr>
<th>1.2.840.10008.5.1.4.1.1.2.1</th>
<th>1.2.840.10008.1.2</th>
<th>SCU</th>
<th>None</th>
</tr>
</thead>
</table>

Digital Intra-Oral X-Ray

Image Storage - For Presentation

<table>
<thead>
<tr>
<th>1.2.840.10008.5.1.4.1.1.1.3</th>
<th>1.2.840.10008.1.2</th>
<th>SCU</th>
<th>None</th>
</tr>
</thead>
</table>

Image Storage - For Processing

<table>
<thead>
<tr>
<th>1.2.840.10008.5.1.4.1.1.3.1</th>
<th>1.2.840.10008.1.2</th>
<th>SCU</th>
<th>None</th>
</tr>
</thead>
</table>

Digital Intra-oral Image Storage - For Processing

<table>
<thead>
<tr>
<th>1.2.840.10008.5.1.4.1.1.3.1</th>
<th>1.2.840.10008.1.2</th>
<th>SCU</th>
<th>None</th>
</tr>
</thead>
</table>

CT Image Storage

<p>| 1.2.840.10008.5.1.4.1.1.2 | 1.2.840.10008.1.2 | SCU | None |</p>
<table>
<thead>
<tr>
<th>US MF Image Storage Retired</th>
<th>1.2.840.10008.5.1.4.1.1.3</th>
<th>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)</th>
<th>1.2.840.10008.1.2</th>
<th>SCU</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>US MF Image Storage</td>
<td>1.2.840.10008.5.1.4.1.1.3.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
</tr>
<tr>
<td>MR Image Storage</td>
<td>1.2.840.10008.5.1.4.1.1.4</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
</tr>
<tr>
<td>US Image Storage Retired</td>
<td>1.2.840.10008.5.1.4.1.1.6</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
</tr>
<tr>
<td>Application Entity Specifications</td>
<td>DICOM Conformance Statement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US Image Storage</td>
<td>1.2.840.10008.5.1.4.1.1.6.1</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)</td>
<td>1.2.840.10008.1.2.2</td>
<td>1.2.840.10008.1.2.1</td>
<td>1.2.840.10008.1.2.4.50</td>
<td>1.2.840.10008.1.2.4.51</td>
</tr>
<tr>
<td>SC Image Storage</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)</td>
<td>1.2.840.10008.1.2.2</td>
<td>1.2.840.10008.1.2.1</td>
<td>1.2.840.10008.1.2.4.50</td>
<td>1.2.840.10008.1.2.4.51</td>
</tr>
<tr>
<td>NM Image Storage</td>
<td>1.2.840.10008.5.1.4.1.1.20</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)</td>
<td>1.2.840.10008.1.2.2</td>
<td>1.2.840.10008.1.2.1</td>
<td>1.2.840.10008.1.2.4.50</td>
<td>1.2.840.10008.1.2.4.51</td>
</tr>
<tr>
<td>X-Ray Angiographic Image Storage</td>
<td>1.2.840.10008.5.1.4.1.1.12.1</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)</td>
<td>1.2.840.10008.1.2.2</td>
<td>1.2.840.10008.1.2.1</td>
<td>1.2.840.10008.1.2.4.50</td>
<td>1.2.840.10008.1.2.4.51</td>
</tr>
<tr>
<td>DICOM Conformance Statement</td>
<td>Application Entity Specifications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIENET MagicView 1000 VF50A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X-Ray Radiofluoroscopic Image Storage	1.2.840.10008.5.1.4.1.1.122	DICOM Implicit VR Little Endian Transfer Syntax, DICOM Implicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)	1.2.840.10008.1.2	SCU	None
RT Image Storage	1.2.840.10008.5.1.4.1.1.481.1	DICOM Implicit VR Little Endian Transfer Syntax, DICOM Implicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)	1.2.840.10008.1.2	SCU	None
Positron Emission Tomography Image Storage	1.2.840.10008.5.1.4.1.1.128	DICOM Implicit VR Little Endian Transfer Syntax, DICOM Implicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)	1.2.840.10008.1.2	SCU	None
VL Endoscopic Image Storage	1.2.840.10008.5.1.4.1.1.77.1.1	DICOM Implicit VR Little Endian Transfer Syntax, DICOM Implicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)	1.2.840.10008.1.2	SCU	None
Application Entity Specifications

SIENET MagicView 1000 VF50A

DICOM Conformance Statement

<table>
<thead>
<tr>
<th>Application Entity Specifications</th>
<th>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)</th>
<th>SCU</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL Microscopic Image Storage</td>
<td>1.2.840.10008.5.1.4.1.1.77.1.2</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
</tr>
<tr>
<td>VL Slide-Coordinates Microscopic Image Storage</td>
<td>1.2.840.10008.5.1.4.1.1.77.1.3</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
</tr>
<tr>
<td>VL Photographic Image Storage</td>
<td>1.2.840.10008.5.1.4.1.1.77.1.4</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
</tr>
<tr>
<td>Hardcopy Color Image Storage</td>
<td>1.2.840.10008.5.1.3.0</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
</tr>
<tr>
<td>Application Entity Specifications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIENET MagicView 1000 VF50A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardcopy Gray-scale Image Storage
- **Standard:** 1.2.840.10008.5.1.1.29
- **Implementation Class:** 1.2.840.10008.1.2
- **SCU:** None
- **Transfer Syntax:**
 - DICOM Implicit VR Little Endian Transfer Syntax
 - DICOM Explicit VR Big Endian Transfer Syntax
 - DICOM Explicit VR Little Endian Transfer Syntax
 - JPEG Baseline (Process 1) Lossy
 - JPEG Extended (Process 2 und 4) Lossy
 - JPEG Lossless, Non-Hierarchical (Process 14)

RT Dose Storage
- **Standard:** 1.2.840.10008.5.1.4.1.1.481.2
- **Implementation Class:** 1.2.840.10008.1.2
- **SCU:** None
- **Transfer Syntax:**
 - DICOM Implicit VR Little Endian Transfer Syntax
 - DICOM Explicit VR Big Endian Transfer Syntax
 - DICOM Explicit VR Little Endian Transfer Syntax

RT Plan Storage
- **Standard:** 1.2.840.10008.5.1.4.1.1.481.5
- **Implementation Class:** 1.2.840.10008.1.2
- **SCU:** None
- **Transfer Syntax:**
 - DICOM Implicit VR Little Endian Transfer Syntax
 - DICOM Explicit VR Big Endian Transfer Syntax
 - DICOM Explicit VR Little Endian Transfer Syntax

RT Structure Set Storage
- **Standard:** 1.2.840.10008.5.1.4.1.1.481.3
- **Implementation Class:** 1.2.840.10008.1.2
- **SCU:** None
- **Transfer Syntax:**
 - DICOM Implicit VR Little Endian Transfer Syntax
 - DICOM Explicit VR Big Endian Transfer Syntax
 - DICOM Explicit VR Little Endian Transfer Syntax

RT Beams Treatment Record Storage
- **Standard:** 1.2.840.10008.5.1.4.1.1.481.4
- **Implementation Class:** 1.2.840.10008.1.2
- **SCU:** None
- **Transfer Syntax:**
 - DICOM Implicit VR Little Endian Transfer Syntax
 - DICOM Explicit VR Big Endian Transfer Syntax
 - DICOM Explicit VR Little Endian Transfer Syntax

RT Brachy Treatment Record Storage
- **Standard:** 1.2.840.10008.5.1.4.1.1.481.6
- **Implementation Class:** 1.2.840.10008.1.2
- **SCU:** None
- **Transfer Syntax:**
 - DICOM Implicit VR Little Endian Transfer Syntax
 - DICOM Explicit VR Big Endian Transfer Syntax
 - DICOM Explicit VR Little Endian Transfer Syntax

RT Treatment Summary Record Storage
- **Standard:** 1.2.840.10008.5.1.4.1.1.481.7
- **Implementation Class:** 1.2.840.10008.1.2
- **SCU:** None
- **Transfer Syntax:**
 - DICOM Implicit VR Little Endian Transfer Syntax
 - DICOM Explicit VR Big Endian Transfer Syntax
 - DICOM Explicit VR Little Endian Transfer Syntax
<table>
<thead>
<tr>
<th>Basic Text SR</th>
<th>1.2.840.10008.5.1.4.1.1.88.11</th>
<th>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</th>
<th>1.2.840.10008.1.2</th>
<th>SCU</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced SR</td>
<td>1.2.840.10008.5.1.4.1.1.88.22</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
</tr>
<tr>
<td>Comprehensive SR</td>
<td>1.2.840.10008.5.1.4.1.1.88.33</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
</tr>
<tr>
<td>Mammography CAD SR</td>
<td>1.2.840.10008.5.1.4.1.1.88.50</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
</tr>
<tr>
<td>Key Object Selection Document</td>
<td>1.2.840.10008.5.1.4.1.1.88.59</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
</tr>
<tr>
<td>Grayscale Soft-copy Presentation State Storage</td>
<td>1.2.840.10008.5.1.4.1.1.11.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
</tr>
<tr>
<td>CSA Non-Image Storage</td>
<td>1.3.12.2.1107.5.9.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
</tr>
</tbody>
</table>

2.2.2.3 SOP Specific Conformance Statement

The DICOM images sent by the Siemens MagicView 1000 are conform to the DICOM IOD definitions (Standard extended IODs).

Overlay data created by the MagicView1000 are stored in (60xx,3000).
The MagicView 1000 might perform shutters even on SOP Classes shutters are not defined for in DICOM. Therefore, for these SOP classes shutters might be ignored by the DICOM node the images are sent to.

The DICOM nodes are responsible for data consistency when modifying images. All unknown private attributes have to be removed upon modification!

For each folder that has to be sent to a remote node, a new association will be established.

Only if the following statements are true an Internal Data Set Object can be altered with JPEG Lossless Compression:

- Photometric Interpretation (0028,0004) is MONOCHROME1, MONOCHROME2 (means grayscale image), RGB or PALETTE COLOR
- Bits Allocated (0028,0100) / Bits Stored is (8/8), (16/12) or (16,10)
- High Bit (0028,0102) is Bits Stored (0028,0101) - 1
- Pixel Data (7FE0,0010) exist and matrix is not yet compressed

Only if the following statements are true an Internal Data Set Object can be altered with JPEG Lossy Compression:

- Photometric Interpretation (0028,0004) is MONOCHROME1, MONOCHROME2 (means a gray scale image), RGB or PALETTE COLOR
- Bits Allocated (0028,0100) / Bits Stored (0028,0101) is (16/12), (16/10) or (8/8)
- High Bit (0028,0102) is Bits Stored (0028,0101) - 1
- Pixel Data (7FE0,0010) exist and matrix is not yet compressed

2.2.2.4 Images resulting from 3D postprocessing

3D result images will be sent as “Secondary Captured”, CT or MR images. The value for (0008/0060) “Modality” will always be retained (i.e. copied from the source images).

Table 3: Modality and SOP Class UID of 3D result images

<table>
<thead>
<tr>
<th>Modality: (0008/0060)</th>
<th>SOP Class UID:(0008/0016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT or MR</td>
<td>1.2.840.10008.5.1.4.1.1.7 or 1.2.840.10008.5.1.4.1.1.2 or 1.2.840.10008.5.1.4.1.1.4</td>
</tr>
</tbody>
</table>

3D result images have one of the following pixel formats:
2.2.2.5 Images resulting from Image Composition

Images can be agglutinated and stored as one new image using e.g. the MagicView 1000 application <Edit: Long Leg>. Composed images will be sent as “Secondary Captured” images. The value for (0008/0060) “Modality” as well as the pixel format will be the same as in the source images.

Table 4: Pixel formats of 3D result images

<table>
<thead>
<tr>
<th>Pixel Representation: (0028/0103)</th>
<th>Samples per Pixel: (0028/0002)</th>
<th>Photometric Interpretation: (0028/0004)</th>
<th>Planar Configuration: (0028/0006)</th>
<th>Bits Allocated: (0028/0100)</th>
<th>Bits Stored: (0028/0101)</th>
<th>High Bit: (0028/0102)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>1</td>
<td>MONOCHROME1</td>
<td>n.a.</td>
<td>16</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>0000</td>
<td>1</td>
<td>MONOCHROME2</td>
<td>n.a.</td>
<td>16</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>0000</td>
<td>3</td>
<td>RGB</td>
<td>0</td>
<td>8</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

The values 1, 2, 3 and 4 for (0008/0008) “Image Type” for 3D result images will be:

- Pixel Data Characteristics: value 1: DERIVED
- Patient Examination Characteristics: value 2: SECONDARY
- Modality Specific Specialization: value 3: OTHER
- Implementation specific Identifier: value 4: see table 5

Table 5: Image Type (0008/0008), value 4 of 3D result images

<table>
<thead>
<tr>
<th>Image Type: (0008/0008) value 4</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHS 3D_MPR</td>
<td>Multi Planar Reformating / Reconstruction (MPR)</td>
</tr>
<tr>
<td>SHS 3D_CURVED</td>
<td>Curved Multi Planar Reformating / Reconstruction (MPR)</td>
</tr>
<tr>
<td>SHS 3D_MIP</td>
<td>Maximum or Minimum Intensity Projection (MIP)</td>
</tr>
<tr>
<td>SHS 3D_VRT</td>
<td>Volumetric Rendering (VRT)</td>
</tr>
<tr>
<td>SHS 3D_SSD</td>
<td>Shaded Surface Display (SSD)</td>
</tr>
<tr>
<td>SHS DENT</td>
<td>Dental Reference Tomogram (Dental package only)</td>
</tr>
<tr>
<td>SHS DPAN</td>
<td>Dental Panorama View (Dental Package only)</td>
</tr>
<tr>
<td>SHS DPAR</td>
<td>Dental Paraxial View (Dental package only)</td>
</tr>
</tbody>
</table>
The values 1, 2, 3, and 4 for (0008/0008) “Image Type” for composed images will be:

- Pixel Data Characteristics: value 1: DERIVED
- Patient Examination Characteristics: value 2: SECONDARY
- Modality Specific Specialization: value 3: MANUEL_RECONSTRUCTED, AXIAL, MPR or PROJECTION IMAGE
- Implementation specific Identifier: value 4: Magic View 1000 U: VE50A
 Magic View 1000 W: VC50A

Further, composed images will contain the following header elements:

- DICOM Derivation Description (0008,2111): value is extended with "Resampled image SIENT"
- Manipulated Image (0028,0050): value RECONSTRUCTED

2.2.3 Real-World Activity - Send Storage Commitment request to a remote node

2.2.3.1 Associated Real-World Activity - Send Storage Commitment request to a remote node

The associated real-world activity is a folder send request initiated by the user of the workstation. After a folder has been sent to a DICOM archive, DNES will try to establish an association to the remote Application Entity. If the association has been established successfully, DNES will generate a Transaction UID and send an N-ACTION request including the Transaction UID and all SOP Instance UIDs to be committed. The SOP Instance UIDs contained in the Storage Commitment request will always be the SOP Instance UIDs that have been sent to the Storage Commitment SCP most recently.

DNES may ask for Storage Commitment of all SOP Classes listed in 2.2.2.2.

DNES is waiting for an N-EVENT-REPORT at the open association for a configurable time (default: 0 sec (asynchronous communication)). Additionally, an N-EVENT-REPORT listener is waiting for incoming associations and messages belonging to the initiated Transaction. If no response is received within a configurable time, the Storage Commitment request can be repeat-

<table>
<thead>
<tr>
<th>Modality: (0008/0060)</th>
<th>SOP Class UID:(0008/0016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR, DR, DS, RF, DF, DX or XA</td>
<td>1.2.840.10008.5.1.4.1.1.7</td>
</tr>
</tbody>
</table>
ed for a configurable number of times. After the maximum number of retries and the maximum response time have been reached, the Transaction UID is no longer valid. Incoming N-EVENT-REPORTS with this Transaction UID will be discarded.

When a success status is received and all SOP instances are committed (no failed SOP Sequence is included in the result message), the corresponding set of SOP instances is marked as 'committed' in the database. Images that have been committed can be deleted using the 'Delete if Archived' functionality, images that have not been committed can only be deleted using the unconditional 'Delete' functionality.

If a failure status has been received, the SOP instances have to be sent to the Storage Commitment SCP again. Otherwise they can only be deleted using unconditional delete.

The Siemens MagicView 1000 will propose Presentation Contexts as shown in the following table.

Table 7: Storage Commitment Push Model SCU Presentation Contexts

<table>
<thead>
<tr>
<th>Abstract Syntax</th>
<th>Transfer Syntax</th>
<th>Role</th>
<th>Extend Negotiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>UID</td>
<td>Name List</td>
<td>UID List</td>
</tr>
<tr>
<td>Storage Commit-</td>
<td>1.2.840.10008.1.20 .1.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td>-ment Push Model</td>
<td></td>
<td>DICOM Explicit VR Big Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
</tbody>
</table>

2.2.4 Real-World Activity - Query the Image Database of a remote node

2.2.4.1 Associated Real-World Activity - Query the Image Database of a Remote Node

The associated Real-World activity is a C-Find request initiated by the user of the workstation. The user specifies some attributes that the remote application should use to query the database. If DQUS successfully establishes an association to the remote Application Entity, it will send one or more C-Find requests (accordings the query model) and will then return the results to the displaying process of the MagicView 1000.

2.2.4.2 Proposed Presentation Contexts

The Siemens MagicView 1000 will propose Presentation Contexts as shown in the following table.
Table 8: Query SCU Presentation Contexts of MagicView 1000

<table>
<thead>
<tr>
<th>Abstract Syntax</th>
<th>Transfer Syntax</th>
<th>Role</th>
<th>Extend Negotiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Root Query/Retriece Information Model - FIND</td>
<td>1.2.840.10008.5.1.4.1.2.1.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax</td>
<td>SCU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Big Endian Transfer Syntax</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Little Endian Transfer Syntax</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>1.2.840.10008.1.2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2.840.10008.1.2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Root Query/Retrieve Information Model - FIND</td>
<td>1.2.840.10008.5.1.4.1.2.2.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax</td>
<td>SCU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Big Endian Transfer Syntax</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Little Endian Transfer Syntax</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>1.2.840.10008.1.2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2.840.10008.1.2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient/Study Only Query/Retrieve Information Model - FIND</td>
<td>1.2.840.10008.5.1.4.1.2.3.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax</td>
<td>SCU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Big Endian Transfer Syntax</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Little Endian Transfer Syntax</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>1.2.840.10008.1.2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2.840.10008.1.2.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The default proposed transfer syntax is DICOM Implicit VR Little Endian Transfer Syntax. The default Query/Retriece Information Model is Study Root.

2.2.4.3 SOP Specific Conformance Statement

DQUS supports the Patient Root Query Model, the Study Root Query Model and the Patient-Study-Only Query Model. By default DQUS initiates a hierarchical Study Root query. The relational query method can be configured (see 5.2).

2.2.4.3.1 Patient Root C-Find SOP Class Specific Conformance Statement

Table 9: Supported Patient level attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient's Name</td>
<td>(0010,0010)</td>
</tr>
<tr>
<td>Patient ID</td>
<td>(0010,0020)</td>
</tr>
<tr>
<td>Patient's Birth Date</td>
<td>(0010,0030)</td>
</tr>
<tr>
<td>Patient's Sex</td>
<td>(0010,0040)</td>
</tr>
<tr>
<td>Other Patient IDs</td>
<td>(0010,1000)</td>
</tr>
</tbody>
</table>
Table 10: Supported Study level attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Comments</td>
<td>(0010,4000)</td>
</tr>
</tbody>
</table>

Table 11: Supported Series level attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Date</td>
<td>(0008,0020)</td>
</tr>
<tr>
<td>Study Time</td>
<td>(0008,0030)</td>
</tr>
<tr>
<td>Accession Number</td>
<td>(0008,0050)</td>
</tr>
<tr>
<td>Modalities in Study</td>
<td>(0008,0061)</td>
</tr>
<tr>
<td>Referring Physician's Name</td>
<td>(0008,0090)</td>
</tr>
<tr>
<td>Study Description</td>
<td>(0008,1030)</td>
</tr>
<tr>
<td>Name of Physician(s) Reading</td>
<td>(0008,1060)</td>
</tr>
<tr>
<td>Study Instance UID</td>
<td>(0020,000D)</td>
</tr>
<tr>
<td>Study ID</td>
<td>(0020,0010)</td>
</tr>
<tr>
<td>Number of Study Related Images</td>
<td>(0020,1208)</td>
</tr>
<tr>
<td>Modality</td>
<td>(0008,0060)</td>
</tr>
<tr>
<td>Series Description</td>
<td>(0008,103E)</td>
</tr>
<tr>
<td>Body Part Examined</td>
<td>(0018,0015)</td>
</tr>
<tr>
<td>Series Instance UID</td>
<td>(0020,000E)</td>
</tr>
<tr>
<td>Series Number</td>
<td>(0020,0011)</td>
</tr>
<tr>
<td>Requested Procedure ID</td>
<td>(0040,1001)</td>
</tr>
<tr>
<td>Perf. Proc. Step Start Date</td>
<td>(0040,0244)</td>
</tr>
<tr>
<td>Perf. Proc. Step Start Time</td>
<td>(0040,0245)</td>
</tr>
</tbody>
</table>

The attribute Number Of Series Related Instances (20,1209) is not supported. The Requested Procedure ID is sent within the Request Attributes Sequence (0040,0275).
Table 12: Supported Image level attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Number</td>
<td>(0020,0013)</td>
</tr>
<tr>
<td>SOP Instance UID</td>
<td>(0008,0018)</td>
</tr>
</tbody>
</table>

2.2.4.3.2 Study Root C-Find SOP Class Specific Conformance Statement

Table 13: Supported Study level attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient's Name</td>
<td>(0010,0010)</td>
</tr>
<tr>
<td>Patient ID</td>
<td>(0010,0020)</td>
</tr>
<tr>
<td>Patient's Birth Date</td>
<td>(0010,0030)</td>
</tr>
<tr>
<td>Patient's Sex</td>
<td>(0010,0040)</td>
</tr>
<tr>
<td>Other Patient IDs</td>
<td>(0010,1000)</td>
</tr>
<tr>
<td>Patient Comments</td>
<td>(0010,4000)</td>
</tr>
<tr>
<td>Study Date</td>
<td>(0008,0020)</td>
</tr>
<tr>
<td>Study Time</td>
<td>(0008,0030)</td>
</tr>
<tr>
<td>Accession Number</td>
<td>(0008,0050)</td>
</tr>
<tr>
<td>Modalities in Study</td>
<td>(0008,0061)</td>
</tr>
<tr>
<td>Referring Physician's Name</td>
<td>(0008,0090)</td>
</tr>
<tr>
<td>Study Description</td>
<td>(0008,1030)</td>
</tr>
<tr>
<td>Name of Physician(s) Reading Study</td>
<td>(0008,1060)</td>
</tr>
<tr>
<td>Study Instance UID</td>
<td>(0020,000D)</td>
</tr>
<tr>
<td>Study ID</td>
<td>(0020,0010)</td>
</tr>
<tr>
<td>Number of Study Related Images</td>
<td>(0020,1208)</td>
</tr>
</tbody>
</table>

- The same Series level attributes as in the Patient Root C-Find SOP class are supported (see Table 11:).
- The same Image level attributes as in the Patient Root C-Find SOP class are supported (see Table 12:).

2.2.4.3.3 Patient/Study Only C-Find SOP Class Specific Conformance
Statement

- The same Patient level attributes as in the Patient Root C-Find SOP class are supported (see Table 9:).
- The same Study level attributes as in the Patient Root C-Find SOP class are supported (see Table 10:).

By default, the MagicView will be configured to show only studies in the query matches list. Even if series or image level attributes are requested and DQUS initiates a C-Find request on series or image level, as a result only the values of the first series or image within a study are displayed. A following retrieve will be performed on study level as well.

If the MagicView is not configured to show only studies (see 5.2) the query level as well as the retrieve level depend on the level of the requested attributes. That means, the query matches list displays either studies, series or images. A following retrieve will be performed on the level displayed.

The timeout for waiting on a C-Find Response can be configured. Its default is set to 60 seconds.

2.2.5 Real-World Activity - Retrieve Image Objects from a Remote Node

2.2.5.1 Associated Real-World Activity - Retrieve Image Objects from a Remote Node

The associated Real-World activity is a C-Move request initiated by the user of the workstation. The user selects one or more studies, series or images from a list generated as a result of the previous C-Find operation. If DQUS successfully establishes an association to the remote Application Entity, it will cause the calling application via C-Move requests to transfer the images to the local Application Entity. The transfer of the images will be done by subsequent C-Store requests and will return the results of the store operation to the calling application.

2.2.5.2 Proposed Presentation Contexts

The Siemens MagicView 1000 will propose Presentation Contexts as shown in the following tables.
The default proposed transfer syntax is DICOM Implicit VR Little Endian Transfer Syntax. The default Query/Retrieve Information Model for C-Move requests is the Study Root Retrieve Information Model.

2.2.5.3 SOP Specific Conformance Statement

If the MagicView is configured to show only studies in the query matches list (see 2.2.2.3) the retrieve level is always study level. Otherwise the retrieve level depends on the requested attributes and can be either study, series or image level.

The timeout for waiting on a C-Move response can be configured (see 5.2). Its default is set to 10 minutes.

2.2.6 Real-World Activity - Send Print Request to a Remote Node

2.2.6.1 Associated Real-World Activity - Send Print Request to a Remote Node

The associated Real-World activity is a folder print request initiated by the user of the workstation.

If the DBP successfully establishes an association to the remote printer Application Entity, it
will send N_GET, N_CREATE, N_SET, N_ACTION and N_DELETE requests to the remote printer.

The Printer SOP Class accepts N_EVENT_REPORT requests.
The Siemens MagicView 1000 will propose Presentation Contexts as shown in the following table.

Table 15: MagicView 1000 Print Management SCU Presentation Contexts

<table>
<thead>
<tr>
<th>Abstract Syntax</th>
<th>Transfer Syntax</th>
<th>Role</th>
<th>Extended Negotiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>UID</td>
<td>Name List</td>
<td>UID List</td>
</tr>
<tr>
<td>Basic Grayscale Print Management</td>
<td>1.2.840.10008.5.1.1.9</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Big Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
</tbody>
</table>

Siemens MagicView supports the following mandatory SOP Classes as defined by the Basic Grayscale Print Management Meta Class:

<table>
<thead>
<tr>
<th>SOP Class Name</th>
<th>SOP Class UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Film Session SOP Class</td>
<td>1.2.840.10008.5.1.1.1</td>
</tr>
<tr>
<td>Basic Film Box SOP Class</td>
<td>1.2.840.10008.5.1.1.2</td>
</tr>
<tr>
<td>Basic Grayscale Image Box SOP Class</td>
<td>1.2.840.10008.5.1.1.4</td>
</tr>
<tr>
<td>Printer SOP Class</td>
<td>1.2.840.10008.5.1.1.16</td>
</tr>
</tbody>
</table>

DBP does not support any optional SOP Classes.

2.2.6.2 Basic Film Session SOP Class

Table 16: Supported N_CREATE attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Copies</td>
<td>(2000, 0010)</td>
<td>> 0</td>
</tr>
</tbody>
</table>

After use the Basic Film Session is closed with N_DELETE.
2.2.6.3 Basic Film Box SOP Class

Table 17: Supported N_CREATE attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Display Format</td>
<td>(2010, 0010)</td>
<td>STANDARD;1,1</td>
</tr>
<tr>
<td>Film Orientation</td>
<td>(2010, 0040)</td>
<td>PORTRAIT</td>
</tr>
<tr>
<td>Film Size ID</td>
<td>(2010, 0050)</td>
<td>14INX17IN, 14INX14IN, 11INX14IN, 8INX10IN, 10INX12IN, 10INX14IN, 24CMx24CM, 24CMx30CM</td>
</tr>
<tr>
<td>Magnification Type</td>
<td>(2010, 0060)</td>
<td>REPLICATE, BILINEAR, CUBIC</td>
</tr>
<tr>
<td>Min Density</td>
<td>(2010, 0120)</td>
<td>>= 0</td>
</tr>
<tr>
<td>Max Density</td>
<td>(2010, 0130)</td>
<td>> 0</td>
</tr>
<tr>
<td>Configuration Information</td>
<td>(2010, 0150)</td>
<td>Any character string, values must be taken from the SCP’s Conformance Statement.</td>
</tr>
<tr>
<td>Referenced Film Session Sequence</td>
<td>(2010, 0500)</td>
<td></td>
</tr>
</tbody>
</table>

Min Density and Configuration Information are only created after special customization.

N_ACTION is used to start printing.

2.2.6.4 Basic Grayscale Image Box SOP Class

Table 18: Supported N_SET attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Per Pixel</td>
<td>(0028, 0002)</td>
<td>1</td>
</tr>
<tr>
<td>Photometric Interpretation</td>
<td>(0028, 0004)</td>
<td>MONOCHROME2</td>
</tr>
<tr>
<td>Rows</td>
<td>(0028, 0010)</td>
<td>> 0</td>
</tr>
<tr>
<td>Columns</td>
<td>(0028, 0011)</td>
<td>> 0</td>
</tr>
<tr>
<td>Pixel Aspect Ratio</td>
<td>(0028, 0034)</td>
<td>11:1</td>
</tr>
</tbody>
</table>
2.2.6.5 Printer SOP Class

Table 19: Supported N-GET attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bits Allocated</td>
<td>(0028, 0100)</td>
<td>8</td>
</tr>
<tr>
<td>Bits Stored</td>
<td>(0028, 0101)</td>
<td>8</td>
</tr>
<tr>
<td>High Bit</td>
<td>(0028, 0102)</td>
<td>7</td>
</tr>
<tr>
<td>Pixel Representation</td>
<td>(0028, 0103)</td>
<td>0</td>
</tr>
<tr>
<td>Image Position</td>
<td>(2020, 0010)</td>
<td>1</td>
</tr>
<tr>
<td>Polarity</td>
<td>(2020, 0020)</td>
<td>NORMAL</td>
</tr>
<tr>
<td>Basic Grayscale Image Sequence</td>
<td>(2020, 0110)</td>
<td></td>
</tr>
<tr>
<td>Pixel Data</td>
<td>(7FE0, 0010)</td>
<td></td>
</tr>
</tbody>
</table>

2.2.6.6 SOP Specific Conformance Statement

Only one association will be processed at a time.

In case of a failure return status of the Print SCP, the current job will be suspended.

2.3 Association Acceptance Policy

The Siemens MagicView 1000 accepts a new association for

- DIMSE-C-ECHO
- DIMSE-C-STORE
• DIMSE-C-FIND
• DIMSE-C-MOVE
• DIMSE-N-ACTION
• DIMSE-N-EVENT-REPORT (see 2.2.6.1)

service operations.

2.3.1 Real-World Activity - Receive C-Echo request

2.3.1.1 Associated Real-World Activity - respond to C-Echo request

The associated Real-World activity is a C-Echo response by DRCV, DQRY or DNES.

2.3.1.2 Accepted Presentation Contexts

The Siemens MagicView 1000 will accept Presentation Contexts for Verification as shown in the following table.

<table>
<thead>
<tr>
<th>Abstract Syntax</th>
<th>Transfer Syntax</th>
<th>Role</th>
<th>Extend Negotiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>UID</td>
<td>Name List</td>
<td>UID List</td>
</tr>
<tr>
<td>Verification Service Class</td>
<td>1.2.840.10008.1.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2 SCP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Big Endian Transfer Syntax,</td>
<td>1.2.840.10008.1.2.1 SCP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2.2 SCP</td>
</tr>
</tbody>
</table>

2.3.1.3 SOP Specific Conformance to the Verification SOP Class

MagicView 1000 provides standard conformance to the DICOM Verification SOP Class. The DICOM MagicView 1000 accepts any Application Entity Title from the SCU.
2.3.2 Real-World Activity - Receive Image Objects from a Remote Node

2.3.2.1 Associated Real-World Activity - Receive Image Objects from a Remote Node

The associated Real-World activity is a C-Store request received by the daemon process DRCV. After accepting an association from a remote DICOM AE, the DRCV process receives the images via the open association.

After the association has been closed by the sender, DRCV initiates the transfer of the images into the MagicView’s database. If the transfer fails, DRCV returns an error status.

2.3.2.2 Accepted Presentation Contexts

The Siemens MagicView 1000 will accept Presentation Contexts as shown in the following table.
Table 21: Storage SCP Presentation Contexts of MagicView 1000

<table>
<thead>
<tr>
<th>Presentation Context Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract Syntax</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>CR Image Storage</td>
</tr>
<tr>
<td>Digital X-Ray Image Storage - For Presentation</td>
</tr>
<tr>
<td>Digital X-Ray Image Storage - For Processing</td>
</tr>
<tr>
<td>Digital Mammography Image Storage - For Presentation</td>
</tr>
<tr>
<td>Application Entity Specifications</td>
</tr>
<tr>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Digital Mammography Image Storage - For Processing</td>
</tr>
<tr>
<td>Digital Intra-Oral X-Ray Image Storage - For Presentation</td>
</tr>
<tr>
<td>Digital Intra-oral Image Storage - For Processing</td>
</tr>
<tr>
<td>CT Image Storage</td>
</tr>
<tr>
<td>Service</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>US MF Image Storage Retired</td>
</tr>
<tr>
<td>US MF Image Storage</td>
</tr>
<tr>
<td>MR Image Storage</td>
</tr>
<tr>
<td>US Image Storage Retired</td>
</tr>
<tr>
<td>Application Entity Specifications</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>US Image Storage</td>
</tr>
<tr>
<td>SC Image Storage</td>
</tr>
<tr>
<td>NM Image Storage</td>
</tr>
<tr>
<td>X-Ray Angiographic Image Storage</td>
</tr>
<tr>
<td>X-Ray Radiographic Image Storage</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>RT Image Storage</td>
</tr>
<tr>
<td>Positron Emission Tomography Image Storage</td>
</tr>
<tr>
<td>VL Endoscopic Image Storage</td>
</tr>
<tr>
<td>Application Entity Specifications</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>VL Microscopic Image Storage</td>
</tr>
<tr>
<td>1.2.840.10008.5.1.4.1.1.77.1.2</td>
</tr>
<tr>
<td>DICOM Implicit VR Little Endian Transfer Syntax,</td>
</tr>
<tr>
<td>DICOM Explicit VR Big Endian Transfer Syntax,</td>
</tr>
<tr>
<td>DICOM Explicit VR Little Endian Transfer Syntax</td>
</tr>
<tr>
<td>JPEG Baseline (Process 1) Lossy</td>
</tr>
<tr>
<td>JPEG Extended (Process 2 und 4) Lossy</td>
</tr>
<tr>
<td>JPEG Lossless, Non-Hierarchical (Process 14)</td>
</tr>
</tbody>
</table>

VL Slide-Coordinates Microscopic Image Storage	
1.2.840.10008.5.1.4.1.1.77.1.3	1.2.840.10008.1.2 SCP None
DICOM Implicit VR Little Endian Transfer Syntax,	1.2.840.10008.1.2
DICOM Explicit VR Big Endian Transfer Syntax,	1.2.840.10008.1.2.2
DICOM Explicit VR Little Endian Transfer Syntax	1.2.840.10008.1.2.1
JPEG Baseline (Process 1) Lossy	1.2.840.10008.1.2.4.50
JPEG Extended (Process 2 und 4) Lossy	1.2.840.10008.1.2.4.51
JPEG Lossless, Non-Hierarchical (Process 14)	1.2.840.10008.1.2.4.70

VL Photographic Image Storage	
1.2.840.10008.5.1.4.1.1.77.1.4	1.2.840.10008.1.2 SCP None
DICOM Implicit VR Little Endian Transfer Syntax,	1.2.840.10008.1.2
DICOM Explicit VR Big Endian Transfer Syntax,	1.2.840.10008.1.2.2
DICOM Explicit VR Little Endian Transfer Syntax	1.2.840.10008.1.2.1
JPEG Baseline (Process 1) Lossy	1.2.840.10008.1.2.4.50
JPEG Extended (Process 2 und 4) Lossy	1.2.840.10008.1.2.4.51
JPEG Lossless, Non-Hierarchical (Process 14)	1.2.840.10008.1.2.4.70

Basic Text SR	
1.2.840.10008.5.1.4.1.1.88.11	1.2.840.10008.1.2 SCP None
DICOM Implicit VR Little Endian Transfer Syntax,	1.2.840.10008.1.2
DICOM Explicit VR Big Endian Transfer Syntax,	1.2.840.10008.1.2.2
DICOM Explicit VR Little Endian Transfer Syntax	1.2.840.10008.1.2.1

<p>| Hardcopy Color Image Storage | |
| 1.2.840.10008.5.1.1.30 | 1.2.840.10008.1.2 SCP None |
| DICOM Implicit VR Little Endian Transfer Syntax, | 1.2.840.10008.1.2 |
| DICOM Explicit VR Big Endian Transfer Syntax, | 1.2.840.10008.1.2.2 |
| DICOM Explicit VR Little Endian Transfer Syntax | 1.2.840.10008.1.2.1 |
| JPEG Baseline (Process 1) Lossy | 1.2.840.10008.1.2.4.50 |
| JPEG Extended (Process 2 und 4) Lossy | 1.2.840.10008.1.2.4.51 |
| JPEG Lossless, Non-Hierarchical (Process 14) | 1.2.840.10008.1.2.4.70 |</p>
<table>
<thead>
<tr>
<th>Application Entity Specifications</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SIENET MagicView 1000 VF50A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hardcopy Gray-scale Image Storage</th>
<th>1.2.840.10008.5.1.1.29</th>
<th>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax JPEG Baseline (Process 1) Lossy JPEG Extended (Process 2 und 4) Lossy JPEG Lossless, Non-Hierarchical (Process 14)</th>
<th>1.2.840.10008.1.2</th>
<th>SCP</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT Dose Storage</td>
<td>1.2.840.10008.5.1.4.1.1.481.2</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>RT Plan Storage</td>
<td>1.2.840.10008.5.1.4.1.1.481.5</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>RT Structure Set Storage</td>
<td>1.2.840.10008.5.1.4.1.1.481.3</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>RT Beams Treatment Record Storage</td>
<td>1.2.840.10008.5.1.4.1.1.481.4</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>RT Brachy Treatment Record Storage</td>
<td>1.2.840.10008.5.1.4.1.1.481.6</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>RT Treatment Summary Record Storage</td>
<td>1.2.840.10008.5.1.4.1.1.481.7</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCP</td>
<td>None</td>
</tr>
</tbody>
</table>
DICOM Conformance Statement

<table>
<thead>
<tr>
<th>Application</th>
<th>SOP Class</th>
<th>Transfer Syntaxes</th>
<th>SCP</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhanced SR</td>
<td>1.2.840.10008.5.1.4.1.1.88.22</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>Comprehensive SR</td>
<td>1.2.840.10008.5.1.4.1.1.88.33</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>Mammography CAD SR</td>
<td>1.2.840.10008.5.1.4.1.1.88.50</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>Key Object Selection Document</td>
<td>1.2.840.10008.5.1.4.1.1.88.59</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>Grayscale Softcopy Presentation State Storage</td>
<td>1.2.840.10008.5.1.4.1.1.11.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>CSA Non-Image Storage</td>
<td>1.3.12.2.1107.5.9.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>SCU</td>
<td>None</td>
</tr>
</tbody>
</table>

JPEG compression transfer syntaxes are not supported for non-image objects.

Restriction: Objects with one of the following SOP Classes can only be stored, but will not be evaluated or displayed:

Objects with one of the other SOP Classes can be displayed if the preconditions described in 2.3.2.3 are fulfilled.
2.3.2.3 SOP Specific Conformance Statement

The Siemens MagicView 1000 is conform to the Full Storage Service Class at Level 2. No Type 1, Type 2 or Type 3 attributes are discarded from the images. Even elements specified by tags not included in the DICOM standard will be kept.

Images with identical Study Instance UID and (configurable) PPS ID if sent in one association or images with identical Study Instance UID (configurable) and PPS ID sent in multiple associations within a configurable time (default time is 0, see 5.2) are grouped into one folder. Images received after time expired are assigned to a new folder.

The MagicView 1000 can be configured to save the Patient Name in a standardized (normalized) format, e.g. the format used by the RIS. The original name is saved in the private tag (0091,0020) and can be restored when sending to a remote DICOM node.

If an image does not contain a Patient Name, the Patient ID will be used as Patient Name. If an image neither contains Patient Name nor Patient ID, the Patient Name is “no name”.

If patient demographics or image information are modified later on, the original header may be modified and private elements may be discarded in order to prevent inconsistencies in elements not known to the MagicView.

Only if the following statements are true a Data Set Object with JPEG Lossless Compression can be received:

- Photometric Interpretation (0028,0004) is MONOCHROME1, MONOCHROME2 (means grayscale image), RGB or PALETTE COLOR
- Bits Allocated (0028,0100) / Bits Stored is (8/8), (16/16), (16/12) or (16,10)
- High Bit (0028,0102) is Bits Stored (0028,0101) - 1

Only if the following statements are true a Data Set Object with JPEG Lossy Compression can be received:

- Photometric Interpretation (0028,0004) is MONOCHROME1, MONOCHROME2 (means a gray scale image), YBR_FULL, YBR_FULL_422, RGB or PALETTE COLOR
- Bits Allocated (0028,0100) / Bits Stored (0028,0101) is (16,12), (16/10) or (8/8)
- High Bit (0028,0102) is Bits Stored (0028,0101) - 1

Photometric interpretation values HSV, PALETTE COLOR, YBR_FULL, YBR_FULL_422 and YBR_PARTIAL_422 will be converted to RGB when being loaded into the viewer. Except for PALETTE COLOR images the conversion becomes permanent when the images are saved.

Overlay information within the pixel matrix might be discarded and stored in a single overlay plane.

The MagicView 1000 is able to receive and store all SOP Classes listed in Table 21:. In order to be displayed, the data objects must have a pixel matrix and meet the following pixel format requirements:

- 0028/0002 Samples per pixel must have a value of 1 or 3 (which means that ARGB and CMYK are not supported).
0028/0004 Photometric Interpretation must have a value of Monochrome 1, Monochrome 2 or Palette Color if 0028/0002 has the value 1.

0028/0004 must have a value of RGB, HSV, PALETTE COLOR, YBR_FULL, YBR_FULL_422 or YBR_PARTIAL if 0028/0002 has the value 3.

0028/0100 Bits Allocated must be 8 or 16 (decimal)

at least one of 0028/0101 and 0028/0102 must have a value.

0028/0102 High Bit must have the value of Bits Stored minus 1 (right justified).

Either 0028/1050 and 0028/1051 or 0028/3010 for VOI-LUT as well as 0028/1052 and 0028/1053 should have values, which allow the image to be displayed on other workstations.

Bits of the pixel data, which are not described by groups 0028 and 60xx (00<=xx<=1e) must be set to 0.

In order to display the images, sometimes pixels may have to be altered (see second part of the following table).

Table 22: Pixel formats

<table>
<thead>
<tr>
<th>28/103</th>
<th>28/2</th>
<th>28/4</th>
<th>28/6</th>
<th>28/100</th>
<th>28/101</th>
<th>28/102</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIXEL OK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000</td>
<td>1</td>
<td>MONOCHROME1</td>
<td>n.a.</td>
<td>16</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MONOCHROME2</td>
<td></td>
<td></td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RGB</td>
<td>0001</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

PIXEL OK						
0000	1	MONOCHROME1	MONOCHROME2	16	>12	<=16
				16	8	7
		PALETTE COLOR			16	8
					8	7

CONVERTABLE						
0001	3	RGB	0001	8	8	7
		HSV	0000	8	8	7
		YBR_FULL	0000	8	8	7
		YBR_FULL_422	0001	8	8	
		YBR_PARTIAL_422		8	8	
		MONOCHROME1	16	<=16		
		MONOCHROME2				
		PALETTE COLOR				
If images contain pixel data in which the difference between the least and the highest value is greater than 4095, pixel data will get lost as soon as the images are displayed. In case the MagicView 1000 receives images with a non-square pixel size in (28,30) or (28,80), the pixel data will be manipulated for display. In both cases the images are displayed with a warning symbol. When being saved after display the changes become permanent.

The MagicView 1000 is able to accept and interprete overlays described by group 60xx (see Table 23:).

Table 23: Overlay Attributes

<table>
<thead>
<tr>
<th>Tag</th>
<th>Name</th>
<th>Module</th>
<th>Type</th>
<th>VR</th>
<th>VM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(60xx,0010)</td>
<td>Overlay Rows</td>
<td>Overlay Plane</td>
<td>1</td>
<td>US</td>
<td>1</td>
</tr>
<tr>
<td>(60xx,0011)</td>
<td>Overlay Columns</td>
<td>Overlay Plane</td>
<td>1</td>
<td>US</td>
<td>1</td>
</tr>
<tr>
<td>(60xx,0015)</td>
<td>Number of Frames in Overlay</td>
<td>Multi-Frame Overlay</td>
<td>1</td>
<td>IS</td>
<td>1</td>
</tr>
<tr>
<td>(60xx,0050)</td>
<td>Overlay Origin</td>
<td>Overlay Plane</td>
<td>1</td>
<td>SS</td>
<td>2</td>
</tr>
<tr>
<td>(60xx,0100)</td>
<td>Overlay Bits Allocated</td>
<td>Overlay Plane</td>
<td>1</td>
<td>US</td>
<td>1</td>
</tr>
<tr>
<td>(60xx,0102)</td>
<td>Overlay Bit Position</td>
<td>Overlay Plane</td>
<td>1</td>
<td>US</td>
<td>1</td>
</tr>
<tr>
<td>(60xx,3000)</td>
<td>Overlay Data</td>
<td>Overlay Plane</td>
<td>1C</td>
<td>OW</td>
<td>1</td>
</tr>
</tbody>
</table>

The overlay data to be displayed can be taken either from (60xx,3000) or from (7fe0,0010). When creating overlay data the MagicView 1000 writes those data into (60xx,3000).

ISO-IR 100 is the only supported extended character set (see 6).

For example images containing chinese letters are not supported.

The DICOM MagicView 1000 receiver DRCV uses the following return codes:

- **Refused (A700):**
 This error status indicates a lack of resources (e.g. not enough disk space) on the DICOM Interface Queues.

- **Error (A900 or C000):**
 An error occurred while processing the image. The image might not be stored and the association is aborted.

- **Success(0000):**
 In the event of a successful C-STORE operation, the image has been successfully stored.

By default the association is not aborted in case of return codes ‘Refused’ or ‘Error’. But the behaviour is configurable (see 5.2).

2.3.2.4 Restrictions for 3D postprocessing

The following restrictions apply for 3D postprocessing:

- **modality:**

54 of 83

Rev. 10.0
Application Entity Specifications

SIENET MagicView 1000 VF50A

DICOM Conformance Statement

Table 24: Supported modalities for 3D postprocessing

<table>
<thead>
<tr>
<th>Modality: (0008/0060)</th>
<th>SOP Class UID: (0008/0016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>1.2.840.10008.5.1.4.1.1.2</td>
</tr>
<tr>
<td>MR</td>
<td>1.2.840.10008.5.1.4.1.1.4</td>
</tr>
</tbody>
</table>

- pixel formats: All pixel formats which can be converted into those ones listed below (see Table 25), may be used:

Table 25: Supported pixel formats for 3D postprocessing

<table>
<thead>
<tr>
<th>Pixel Representation: (0028/0100)</th>
<th>Samples per Pixel: (0028/0002)</th>
<th>Photometric Interpretation: (0028/0004)</th>
<th>Planar Configuration: (0028/0006)</th>
<th>Bits Allocated: (0028/0100)</th>
<th>Bits Stored: (0028/0101)</th>
<th>High Bit: (0028/0102)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 1</td>
<td>MONOCHROME1 n.a.</td>
<td>16</td>
<td>12 >= x > 9</td>
<td>11 >= x > 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000 1</td>
<td>MONOCHROME2 n.a.</td>
<td>16</td>
<td>12 >= x > 9</td>
<td>11 >= x > 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- minimum set of header attributes required for 3D postprocessing:

Table 26: Attributes for 3D postprocessing

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Position (Patient)</td>
<td>(0020/0032)</td>
<td></td>
</tr>
<tr>
<td>Image Orientation (Patient)</td>
<td>(0020/0037)</td>
<td></td>
</tr>
<tr>
<td>Frame of Reference UID</td>
<td>(0020/0052)</td>
<td></td>
</tr>
<tr>
<td>Rows</td>
<td>(0028/0010)</td>
<td>Only formats with 128 <= Rows <= 1024 and Rows == Columns (e.g. 128x128, 256x256, 512x512, 1024x1024) are supported.</td>
</tr>
<tr>
<td>Columns</td>
<td>(0028/0020)</td>
<td></td>
</tr>
<tr>
<td>Pixel Spacing</td>
<td>(0028/0030)</td>
<td>Non square pixel spacing is not supported.</td>
</tr>
<tr>
<td>Slice Thickness</td>
<td>(0018/0050)</td>
<td></td>
</tr>
</tbody>
</table>

2.3.2.5 Restrictions for Image Composition

Images can be agglutinated and stored as one new image using e.g. the MagicView 1000 application <Edit:Long Leg>. The following SOP Classes or Modalities are permitted for Image Composition:

- SOP Classes:
Table 27: Supported SOP Classes for Image Composition

<table>
<thead>
<tr>
<th>SOP Class UID: (0008/0016)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.840.10008.5.1.4.1.1.12.1</td>
<td>X-Ray Angiographic Image Storage</td>
</tr>
<tr>
<td>1.2.840.10008.5.1.4.1.1.12.2</td>
<td>X-Ray Radiofluoroscopic Image Storage</td>
</tr>
<tr>
<td>1.2.840.10008.5.1.4.1.1.1</td>
<td>CR Image Storage</td>
</tr>
<tr>
<td>1.2.840.10008.5.1.4.1.1.1.1</td>
<td>Digital X-Ray Image Storage - For</td>
</tr>
<tr>
<td></td>
<td>Presentation</td>
</tr>
<tr>
<td>1.2.840.10008.5.1.4.1.1.1.1</td>
<td>Digital X-Ray Image Storage - For</td>
</tr>
<tr>
<td></td>
<td>Processing</td>
</tr>
</tbody>
</table>

- modality:

Table 28: Supported modalities for Image Composition

<table>
<thead>
<tr>
<th>Modality: (0008/0060)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
</tr>
<tr>
<td>DR</td>
</tr>
<tr>
<td>DS</td>
</tr>
<tr>
<td>RF</td>
</tr>
<tr>
<td>DF</td>
</tr>
<tr>
<td>DX</td>
</tr>
<tr>
<td>XA</td>
</tr>
</tbody>
</table>

- pixel formats: All pixel formats which can be converted into those ones listed below may be used:

Table 29: Supported pixel formats for Image Composition

<table>
<thead>
<tr>
<th>Pixel Representation: (0028/0103)</th>
<th>Samples per Pixel: (0028/0002)</th>
<th>Photometric Interpretation: (0028/0004)</th>
<th>Planar Configuration: (0028/0006)</th>
<th>Bits Allocated: (0028/0100)</th>
<th>Bits Stored: (0028/0101)</th>
<th>High Bit: (0028/0102)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>1</td>
<td>MONOCHROME1</td>
<td>n.a.</td>
<td>12 => x > 9</td>
<td>11 => x > 8</td>
<td></td>
</tr>
<tr>
<td>0000</td>
<td>1</td>
<td>MONOCHROME2</td>
<td>n.a.</td>
<td>12 => x > 9</td>
<td>11 => x > 8</td>
<td></td>
</tr>
</tbody>
</table>

The images are displayed without overlays or shutter.
2.3.3 Real-World Activity - Receive Query Request from a Remote Node

2.3.3.1 Associated Real-World Activity - respond to C-Find request

The associated Real-World activity is a C-Find request received by the daemon process DQRY. After accepting an association from a remote DICOM AE, the DQRY process receives the query requests via the open association and queries the database. For each match a result message is sent to the requesting node.

2.3.3.2 Accepted Presentation Contexts

The Siemens MagicView 1000 will accept Presentation Contexts as shown in the following table.

Table 30: Query SCP Presentation Contexts of MagicView 1000

<table>
<thead>
<tr>
<th>Name</th>
<th>UID</th>
<th>Name List</th>
<th>UID List</th>
<th>Role</th>
<th>Extended Negotiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Root Query/Retrieve Information Model - FIND</td>
<td>1.2.840.10008.5.1.4.1.2.1.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>Study Root Query/Retrieve Information Model - FIND</td>
<td>1.2.840.10008.5.1.4.1.2.2.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>Patient/Study Only Query/Retrieve Information Model - FIND</td>
<td>1.2.840.10008.5.1.4.1.2.3.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCP</td>
<td>None</td>
</tr>
</tbody>
</table>

2.3.3.3 SOP Specific Conformance Statement

- Relational Queries are supported.
- Priority processing is not supported.
- By default the query matching for Patient’s Name is case sensitive. But the behaviour is configurable (see 5.2).
The query matching for Referring Physician’s Name is case sensitive.

Matches on series level are found only for online studies. The images of such studies are still in the RAID.

By default unrestricted queries are possible. But the behaviour is configurable (see 5.2).

The DICOM MagicView 1000 Query Provider DQRY returns one of the following status codes:

- **Success (0000):**
 Matching is complete
- **Pending (FF00):**
 Matches are continuing.
- **Pending (FF01):**
 Matches are continuing. Warning that one or more Optional Keys were not supported.
- **Failed(A900):**
 Identifier does not match SOP Class
- **Refused (A700):**
 Out of Resources (0000,0902) Match overflow (default limit 500 matches)
- **Failed (C001):**
 Unable to process (special (0000,0902) no license)
- **Cancel (FE00)**

The Patient ID is the unique attribute tag at patient level in the DICOM Query Model. The hierarchical search method requires unique Patient IDs in the database. If the database does not provide unique Patient IDs, the Service Class User should use the relational query method or the Study Root Query / Retrieve Model. This enables the user to take the Patient Name and Patient ID to select studies.

2.3.3.3.1 Patient Root C-Find SOP Class Specific Conformance Statement

R = required, **U** = unique, **O** = optional

Table 31: Supported Patient level attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient's Name</td>
<td>(0010,0010)</td>
<td>R</td>
</tr>
<tr>
<td>Patient ID</td>
<td>(0010,0020)</td>
<td>U</td>
</tr>
<tr>
<td>Patient's Birth Date</td>
<td>(0010,0030)</td>
<td>O</td>
</tr>
<tr>
<td>Patient’s Sex</td>
<td>(0010,0040)</td>
<td>O</td>
</tr>
<tr>
<td>Other Patient IDs</td>
<td>(0010,1000)</td>
<td>O</td>
</tr>
</tbody>
</table>
Table 32: Supported Study level attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Date</td>
<td>(0008,0020)</td>
<td>R</td>
</tr>
<tr>
<td>Study Time</td>
<td>(0008,0030)</td>
<td>R</td>
</tr>
<tr>
<td>Accession Number</td>
<td>(0008,0050)</td>
<td>R</td>
</tr>
<tr>
<td>Modalities in Study</td>
<td>(0008,0061)</td>
<td>O</td>
</tr>
<tr>
<td>Study ID</td>
<td>(0020,0010)</td>
<td>R</td>
</tr>
<tr>
<td>Study Instance UID</td>
<td>(0020,000D)</td>
<td>U</td>
</tr>
<tr>
<td>Referring Physician's Name</td>
<td>(0008,0090)</td>
<td>O</td>
</tr>
<tr>
<td>Study Description</td>
<td>(0008,1030)</td>
<td>O</td>
</tr>
<tr>
<td>Name of Physician(s) Reading Study</td>
<td>(0008,1060)</td>
<td>O</td>
</tr>
<tr>
<td>Number of Study Related Images</td>
<td>(0020,1208)</td>
<td>O</td>
</tr>
</tbody>
</table>

Table 33: Supported Series level attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modality</td>
<td>(0008,0060)</td>
<td>R</td>
</tr>
<tr>
<td>Series Description</td>
<td>(0008,103E)</td>
<td>O</td>
</tr>
<tr>
<td>Series Number</td>
<td>(0020,0011)</td>
<td>R</td>
</tr>
<tr>
<td>Series Instance UID</td>
<td>(0020,000E)</td>
<td>U</td>
</tr>
<tr>
<td>Body Part Examined</td>
<td>(0018,0015)</td>
<td>O</td>
</tr>
<tr>
<td>PPS Start Date</td>
<td>(0040,0244)</td>
<td>O</td>
</tr>
<tr>
<td>PPS Start Time</td>
<td>(0040,0245)</td>
<td>O</td>
</tr>
<tr>
<td>PPS Stop Date</td>
<td>(0040,0250)</td>
<td>O</td>
</tr>
<tr>
<td>PPS Stop Time</td>
<td>(0040,0251)</td>
<td>O</td>
</tr>
<tr>
<td>Requested Procedure ID</td>
<td>(0040,1001)</td>
<td>O</td>
</tr>
</tbody>
</table>

The attribute Number Of Series Related Instances (20,1209) is not supported. The Requested Procedure ID may or may not be part of the Request Attributes Sequence (40,275) in the C-Find request DQRY receives. In the C-Find response it will always be encoded in the Request Attributes Sequence.
Table 34: Supported Image level attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Number</td>
<td>(0020,0013)</td>
<td>R</td>
</tr>
<tr>
<td>SOP Class UID</td>
<td>(0008,0016)</td>
<td>O</td>
</tr>
<tr>
<td>SOP Instance UID</td>
<td>(0008,0018)</td>
<td>U</td>
</tr>
<tr>
<td>Image Date</td>
<td>(0008,0023)</td>
<td>O</td>
</tr>
<tr>
<td>Image Time</td>
<td>(0008,0033)</td>
<td>O</td>
</tr>
<tr>
<td>Matrix Rows</td>
<td>(0028,0010)</td>
<td>O</td>
</tr>
<tr>
<td>Matrix Columns</td>
<td>(0028,0011)</td>
<td>O</td>
</tr>
<tr>
<td>Number of Frames</td>
<td>(0028,0008)</td>
<td>O</td>
</tr>
<tr>
<td>Bits Allocated</td>
<td>(0028,0100)</td>
<td>O</td>
</tr>
<tr>
<td>Bits Stored</td>
<td>(0028,0101)</td>
<td>O</td>
</tr>
<tr>
<td>Presentation Label</td>
<td>(0070,0080)</td>
<td>O</td>
</tr>
<tr>
<td>Presentation Description</td>
<td>(0070,0081)</td>
<td>O</td>
</tr>
<tr>
<td>Presentation Creation Date</td>
<td>(0070,0082)</td>
<td>O</td>
</tr>
<tr>
<td>Presentation Creation Time</td>
<td>(0070,0083)</td>
<td>O</td>
</tr>
<tr>
<td>Presentation Creator's Name</td>
<td>(0070,0084)</td>
<td>O</td>
</tr>
</tbody>
</table>

2.3.3.3.2 Study Root C-Find SOP Class Specific Conformance Statement

Table 35: Supported Study level attributes

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Date</td>
<td>(0008,0020)</td>
<td>R</td>
</tr>
<tr>
<td>Study Time</td>
<td>(0008,0030)</td>
<td>R</td>
</tr>
<tr>
<td>Accession Number</td>
<td>(0008,0050)</td>
<td>R</td>
</tr>
<tr>
<td>Modalities in Study</td>
<td>(0008,0061)</td>
<td>O</td>
</tr>
<tr>
<td>Patient's Name</td>
<td>(0010,0010)</td>
<td>R</td>
</tr>
<tr>
<td>Patient ID</td>
<td>(0010,0020)</td>
<td>R</td>
</tr>
<tr>
<td>Other Patient IDs</td>
<td>(0010,1000)</td>
<td>O</td>
</tr>
<tr>
<td>Study ID</td>
<td>(0020,0010)</td>
<td>R</td>
</tr>
<tr>
<td>Study Instance UID</td>
<td>(0020,000D)</td>
<td>U</td>
</tr>
</tbody>
</table>
The same Series level attributes as in the Patient Root C-Find SOP class are supported (see Table 33:).

The same Image level attributes as in the Patient Root C-Find SOP class are supported (see Table 34:).

<table>
<thead>
<tr>
<th>Description</th>
<th>Tag</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referring Physician's Name</td>
<td>(0008,0090)</td>
<td>☑</td>
</tr>
<tr>
<td>Study Description</td>
<td>(0008,1030)</td>
<td>☑</td>
</tr>
<tr>
<td>Name of Physician(s) Reading Study</td>
<td>(0008,1060)</td>
<td>☑</td>
</tr>
<tr>
<td>Patient's Birth Date</td>
<td>(0010,0030)</td>
<td>☑</td>
</tr>
<tr>
<td>Patient's Sex</td>
<td>(0010,0040)</td>
<td>☑</td>
</tr>
<tr>
<td>Number of Study Related Images</td>
<td>(0020,1208)</td>
<td>☑</td>
</tr>
</tbody>
</table>
2.3.3.3.3 Patient/Study Only C-Find SOP Class Specific Conformance Statement

- The same Patient level attributes as in the Patient Root C-Find SOP class are supported (see Table 31:).
- The same Study level attributes as in the Patient Root C-Find SOP class are supported (see Table 32:).
2.3.4 Real-World Activity - Receive Transfer Request from a Remote Node

2.3.4.1 Associated Real-World Activity - initiate image transfer

The associated Real-World activity is a C-Move request received by the internal daemon process DQRY. After accepting an association from a remote DICOM AE, the DQRY process receives the C-Move request via the open association and queries the database. The requested images are sent to the requesting node.

2.3.4.2 Accepted Presentation Contexts

The Siemens MagicView 1000 will accept Presentation Contexts as shown in the following table.

<table>
<thead>
<tr>
<th>Name</th>
<th>UID</th>
<th>Transfer Syntax</th>
<th>Role</th>
<th>Extended Negotiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Root Query/Retrieve Information Model - MOVE</td>
<td>1.2.840.10008.5.1.4.1.2.1.2</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>Study Root Query/Retrieve Information Model - MOVE</td>
<td>1.2.840.10008.5.1.4.1.2.2.2</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>SCP</td>
<td>None</td>
</tr>
<tr>
<td>Patient/Study Only Query/Retrieve Information Model - MOVE</td>
<td>1.2.840.10008.5.1.4.1.2.3.2</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax, DICOM Explicit VR Big Endian Transfer Syntax, DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>SCP</td>
<td>None</td>
</tr>
</tbody>
</table>

2.3.4.3 SOP Specific Conformance Statement for SOP class C-Store

DQRY initiates C-Store sub-operations using DICOM Implicit VR Little Endian Transfer Syntax.
2.3.5 Real-World Activity - Receive Storage Commitment Request from a Remote Node

2.3.5.1 Associated Real-World Activity - Response to Storage Commitment Request

The associated Real-World activity is a Storage Commitment request received by the internal daemon process DNES. After accepting an association from a remote DICOM Application Entity, DNES waits for Storage Commitment requests. DNES queries the internal database for the SOP Instances referenced by the Storage Commitment request.

The MagicView 1000 provides only short-term archiving. The existence of the SOP Instance UIDs in the database ensures that the SOP Instances are stored on the MagicView 1000. The MagicView 1000 will ensure that those SOP Instances will be forwarded to a long-term archive. Nevertheless, privileged users may decide that some of the SOP Instances may not be sent to a long-term archive and may be deleted from the MagicView 1000 without being long-term archived.

2.3.5.2 Accepted presentation Contexts

The Siemens MagicView will accept Presentation Contexts as shown in the following table.

Table 37: Storage Commitment Push Model SCP Presentation Contexts

<table>
<thead>
<tr>
<th>Abstract Syntax</th>
<th>Transfer Syntax</th>
<th>Role</th>
<th>Extended Negotiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>UID</td>
<td>Name List</td>
<td>UID List</td>
</tr>
<tr>
<td>Storage Commitment Push Model</td>
<td>1.2.840.10008.1.20.1.1</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Big Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DICOM Explicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2.1</td>
</tr>
</tbody>
</table>

2.3.5.3 SOP specific Conformance Statement for SOP Class Storage Commitment Push Model SCP

2.3.5.3.1 Operations

Upon receipt of the N-Action request DNES returns, via the N-Action response primitive, one of the following N-Action Response Status Codes:

Return Status Codes:
- processing failure (0900)
- success (0000)
A success status conveys that DNES has successfully received the request. A failure status conveys that DNES does not process the request.

2.3.5.3.2 Notifications

If DNES receives a Storage Commitment request, it will query the database for the SOP Instance UIDs to be committed. In case the SOP Instance UIDs cannot be found, DNES can repeat the query for a configurable number of times (default: 0). The time interval between those retries can be configured (see 5.2).

After the SOP Instance UIDs have been found or the maximum number of retries has been reached, DNES sends an N-EVENT-REPORT request to the Storage Commitment SCU. The N-EVENT-REPORT request includes the same Transaction UID as contained in the N-Action request. Afterwards the Transaction UID is no longer valid.

Per default, DNES opens a new association for the N-EVENT-REPORT request. It can also be configured, though, that DNES tries to use the same association as the N-Action request and only opens a new association in case of failure (see 5.2).

The N-EVENT-REPORT request contains the Retrieve AE Title (0008,0054) that can be used by the Storage Commitment SCU to query and/or retrieve the SOP Instances referenced by the Storage Commitment request. The Retrieve AE Title will only be temporarily valid, since the MagicView 1000 will delete images off its local store after a while.

2.3.6 Presentation Context Acceptance Criterion

The Siemens MagicView 1000 will accept any number of Retrieve SOP Classes that are listed above. There is no limit on the number of Presentation Contexts accepted. In the event that the Siemens MagicView 1000 runs out of resources, it will reject the association request.

2.3.7 Transfer Syntax Selection Policies

The Siemens MagicView supports:

- the Implicit VR Little Endian, Explicit VR Little Endian, Explicit VR Big Endian transfer syntaxes
- the JPEG Baseline (Process 1) and JPEG Extended (Process 2 and 4) transfer syntaxes (JPEG Lossy)
- the JPEG Lossless Non-Hierarchical (Process 14) transfer syntax

The transfer syntax priority order for the Storage Provider is:

- JPEG Baseline (Process 1) Lossy
- JPEG Extended (Process 2 and 4)
- JPEG Lossless
- Explicit VR Big Endian
- Explicit VR Little Endian
- Implicit VR Little Endian

The transfer syntax priority order for the Storage Commitment Provider and the Query/Retrieve Provider is:
- Explicit VR Big Endian
- Explicit VR Little Endian
- Implicit VR Little Endian.

By default, the Service Class Users will propose a transfer syntax according to their configuration file, or, in case of FOS, the user interface enables a MagicView user to select a transfer syntax.
JPEG restrictions are listed in chapter 2.2.2.3 SOP Specific Conformance Statement.
3 Communication Profiles

3.1 Supported Communication Stacks

Siemens MagicView 1000 provides DICOM TCP/IP Network Communication Support as defined in Part 8 of the DICOM Standard.

3.1.1 OSI Stack

not yet supported.

3.1.2 TCP/IP Stack

Siemens MagicView 1000 uses the TCP/IP stack from the operating system upon which it executes.

3.1.2.1 Physical Media Support

Siemens MagicView 1000 is independent of the physical medium over which TCP/IP executes. This feature is inherent in the operating system used on the MagicView.

3.1.3 Point-to-Point Stack

not supported.
4 Privatizations

4.1 Private SOP Classes

The SIEMENS MagicView 1000 provides conformance to the following private SOP Classes as an SCU:

Table 38: Private SOP Classes as SCU

<table>
<thead>
<tr>
<th>SOP Class</th>
<th>SOP Class UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitra Report Management</td>
<td>1.2.840.113532.3500.8</td>
</tr>
<tr>
<td>CSA-Non-Image Storage</td>
<td>1.3.12.2.1107.5.9.1</td>
</tr>
</tbody>
</table>

The SIEMENS MagicView 1000 provides conformance to the following private SOP Classes as an SCP:

Table 39: Private SOP Classes as SCP

<table>
<thead>
<tr>
<th>SOP Class</th>
<th>SOP Class UID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA-Non-Image Storage</td>
<td>1.3.12.2.1107.5.9.1</td>
</tr>
</tbody>
</table>

4.1.1 Mitra Report Management SOP Class

4.1.1.1 Real World Activity - Mitra Report Management

4.1.1.1.1 Associated Real World Activity - Mitra Report Management

The MagicView 1000 can request reports via DICOM C-Find.

4.1.1.2 Presentation Context Table - Mitra Report Management

The MagicView 1000 supports the presentation contexts listed in the following table:

Table 40: Presentation Contexts

<table>
<thead>
<tr>
<th>Presentation Context Table</th>
<th>Abstract Syntax</th>
<th>Transfer Syntax</th>
<th>Role</th>
<th>Extend Negotiation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Name</td>
<td>UID</td>
<td>Name List</td>
<td>UID List</td>
</tr>
<tr>
<td>Mitra Report Info Model - FIND</td>
<td>1.2.840.113532.3500.8</td>
<td>DICOM Implicit VR Little Endian Transfer Syntax</td>
<td>1.2.840.10008.1.2</td>
<td>SCU</td>
</tr>
</tbody>
</table>
4.1.1.1.3 SOP Specific Conformance - Mitra Report Management

The MagicView 1000 provides conformance to a Mitra private SOP Class used to fetch report information. The MagicView 1000 supports the following elements for this SOP Class. The SCP is supposed to include all supported attributes in its response, independent of which attributes are included in the query.

The MagicView 1000 is able to use the Requested Procedure ID as matching key even if the SCP only supports it as return key.

Table 41: Mitra Report Information Model Attributes

<table>
<thead>
<tr>
<th>Message Field</th>
<th>Tag</th>
<th>Matching Key Type SCU</th>
<th>Return Key Type SCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accession Number</td>
<td>(0008, 0050)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Patient’s Name</td>
<td>(0010, 0010)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Patient ID</td>
<td>(0010, 0020)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Patient’s Birth Date</td>
<td>(0010, 0030)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Requested Procedure Description</td>
<td>(0032, 1060)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Requested Procedure Code Sequence</td>
<td>(0032, 1064)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>>Code Value</td>
<td>(0008, 0100)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>>Coding Scheme Designator</td>
<td>(0008, 0102)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>>Code Meaning</td>
<td>(0008, 0104)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Requested Procedure ID</td>
<td>(0040, 1001)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Results ID Issuer</td>
<td>(4008, 0042)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpretation Approval Time</td>
<td>(4008, 0013)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Physicians Approving Interpretation</td>
<td>(4008, 0014)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpretation Recorded Date</td>
<td>(4008, 0100)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpretation Recorded Time</td>
<td>(4008, 0101)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpretation Recorder</td>
<td>(4008, 0102)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpretation Transcriber</td>
<td>(4008, 010A)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpretation Text</td>
<td>(4008, 010B)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpretation Author</td>
<td>(4008, 010C)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpretation Approver Sequence</td>
<td>(4008, 0111)</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table 41: Mitra Report Information Model Attributes

<table>
<thead>
<tr>
<th>Message Field</th>
<th>Tag</th>
<th>Matching Key Type SCU</th>
<th>Return Key Type SCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>>Interpretation Approval Date</td>
<td>(4008, 0112)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>>Interpretation Approval Time</td>
<td>(4008, 0113)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>>Physician Approving Interpretation</td>
<td>(4008, 0114)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpretation Diagnosis Description</td>
<td>(4008, 0115)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpretation ID</td>
<td>(4008, 0200)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Interpretation Status ID</td>
<td>(4008, 0212)</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

4.1.2 CSA Non-Image SOP Class

This chapter includes the definition of the SIEMENS AG B MED CSA defined private Non-Image Object (called CsaNonImage IOD).

4.1.2.1 CSA Non-Image IOD Module Table

<table>
<thead>
<tr>
<th>IE</th>
<th>Module</th>
<th>Reference</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient</td>
<td>Patient</td>
<td>part 3 C.7.1.1</td>
<td>M</td>
</tr>
<tr>
<td>Study</td>
<td>General Study</td>
<td>part 3 C.7.2.1</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Patient Study</td>
<td>part 3 C.7.2.2</td>
<td>U</td>
</tr>
<tr>
<td>Series</td>
<td>General Series</td>
<td>part 3 C.7.3.1</td>
<td>M</td>
</tr>
<tr>
<td>Equipment</td>
<td>General Equipment</td>
<td>part 3 C.7.5.1</td>
<td>U</td>
</tr>
<tr>
<td>CSA Image</td>
<td>CSA Image Header</td>
<td>4.1.2.2</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>CSA Series Header</td>
<td>4.1.2.3</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>MEDCOM Header</td>
<td>4.1.2.4</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>MEDCOM OOG</td>
<td>4.1.2.5</td>
<td>U</td>
</tr>
<tr>
<td></td>
<td>CSA Non-Image</td>
<td>4.1.2.6</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>SOP Common</td>
<td>part 3 C.12.1</td>
<td>M</td>
</tr>
</tbody>
</table>
4.1.2.2 CSA Image Header Module

The table in this section contains private IOD attributes that describe the CSA Image Header.

Table 43: CSA Image Header Module

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>Private Creator</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA Image Header Type</td>
<td>(0029,xx08)</td>
<td>SIEMENS CSA HEADER</td>
<td>1</td>
<td>CSA Image Header identification characteristics. Defined Terms: NUM 4 = NUMARIS/4 SOM 5 = SOMARIS/5</td>
</tr>
<tr>
<td>CSA Image Header Version</td>
<td>(0029,xx09)</td>
<td>SIEMENS CSA HEADER</td>
<td>3</td>
<td>Version of CSA Image Header Info (0029,xx10) format</td>
</tr>
<tr>
<td>CSA Image Header Info</td>
<td>(0029,xx10)</td>
<td>SIEMENS CSA HEADER</td>
<td>3</td>
<td>Product dependent information.</td>
</tr>
</tbody>
</table>

4.1.2.3 CSA Series Header Module

The table in this section contains private IOD attributes that describe the CSA Series Header.

Table 44: CSA Series Header Module

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>Private Creator</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSA Series Header Type</td>
<td>(0029,xx18)</td>
<td>SIEMENS CSA HEADER</td>
<td>1</td>
<td>CSA Series Header identification characteristics. Defined Terms: NUM 4 = NUMARIS/4 SOM 5 = SOMARIS/5</td>
</tr>
<tr>
<td>CSA Series Header Version</td>
<td>(0029,xx19)</td>
<td>SIEMENS CSA HEADER</td>
<td>3</td>
<td>Version of CSA Series Header Info (0029,xx20) format</td>
</tr>
<tr>
<td>CSA Series Header Info</td>
<td>(0029,xx20)</td>
<td>SIEMENS CSA HEADER</td>
<td>3</td>
<td>Product dependent information.</td>
</tr>
</tbody>
</table>
4.1.2.4 MEDCOM Header Module

The table in this section contains private IOD Attributes that describe the MEDCOM Header.

Table 45: MEDCOM Header Module

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>Private Creator</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MedCom Header Type</td>
<td>(0029,xx08)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>1C</td>
<td>MedCom Header identification characteristics. Defined Terms: MEDCOM 1 Required if MedCom Header Info (0029,xx10) present.</td>
</tr>
<tr>
<td>MedCom Header Version</td>
<td>(0029,xx09)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>2C</td>
<td>Version of MedCom Series Header Info (0029,xx10) format. Required if MEDCOM Header Info (0029,xx10) present.</td>
</tr>
<tr>
<td>MedCom Header Info</td>
<td>(0029,xx10)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Manufacturer Model dependent information. The value of the attribute MedCom Header Info (0029,xx10) can be built up in each user defined format.</td>
</tr>
<tr>
<td>MedCom History Information</td>
<td>(0029,xx20)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>MedCom defined Patient Registration history information. See 4.1.2.4.1.</td>
</tr>
<tr>
<td>PMTF Information 1</td>
<td>(0029,xx31)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Transformation Information</td>
</tr>
<tr>
<td>PMTF Information 2</td>
<td>(0029,xx32)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Transformation Information</td>
</tr>
<tr>
<td>PMTF Information 3</td>
<td>(0029,xx33)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Transformation Information</td>
</tr>
<tr>
<td>PMTF Information 4</td>
<td>(0029,xx34)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Transformation Information</td>
</tr>
<tr>
<td>Application Header Sequence</td>
<td>(0029,xx40)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Sequence of Application Header Items. Zero or more Items shall be included in this sequence. Encoded as a sequence of items.</td>
</tr>
<tr>
<td>Application Header Type</td>
<td>(0029,xx41)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>1C</td>
<td>Application Header identification characteristics. Required if Sequence is sent.</td>
</tr>
</tbody>
</table>
Table 45: MEDCOM Header Module

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>Private Creator</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Application Header ID</td>
<td>(0029,xx42)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Identification of an application header.</td>
</tr>
<tr>
<td>> Application Header Version</td>
<td>(0029,xx43)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Version of Application Header Info (0029,xx43) format.</td>
</tr>
<tr>
<td>> Application Header Info</td>
<td>(0029,xx44)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Application dependent information.</td>
</tr>
<tr>
<td>Workflow Control Flags</td>
<td>(0029,xx50)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Eight free defineable flags.</td>
</tr>
<tr>
<td>Archive Management Flag Keep Online</td>
<td>(0029,xx51)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Flag to control remote archive management systems to keep the image always online (also when already archived). Enumerated Values: 00 = remote control not required, 01 = keep image online.</td>
</tr>
<tr>
<td>Archive Management Flag Do Not Archive</td>
<td>(0029,xx52)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Flag to control remote archive management system not to archive the related image. Enumerated Values: 00 = remote control not required, 01 = do not archive image.</td>
</tr>
<tr>
<td>Image Location Status</td>
<td>(0029,xx53)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Image location status to control receiving. Defined Terms: ONLINE = retrieving has to be done as usual, NEARLINE = move request to SCP and delay according to the value of Estimated Retrieve Time (0029,xx54), OFFLINE = invoking a retrieve operation initiates an operator request, INVALID = invoking a retrieve operation would always result in an error.</td>
</tr>
<tr>
<td>Estimated Retrieve Time</td>
<td>(0029,xx54)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>3</td>
<td>Estimated retrieve time in seconds. A value less than zero (< 0) indicates location is OFFLINE or INVALID.</td>
</tr>
</tbody>
</table>
4.1.2.4.1 MEDCOM History Information

The value of the attribute MEDCOM History Information (0029,xx20) is defined in the following way:

<table>
<thead>
<tr>
<th>Part</th>
<th>Name</th>
<th>Type</th>
<th>Bytes</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>header</td>
<td>Identifier</td>
<td>string</td>
<td>32</td>
<td>always "CSA HISTORY"</td>
</tr>
<tr>
<td></td>
<td>Version</td>
<td>string</td>
<td>32</td>
<td>e.g. "V1.10"</td>
</tr>
<tr>
<td>> n items</td>
<td>Class Name</td>
<td>string</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modification String</td>
<td>string</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>

4.1.2.5 MEDCOM OOG Module

The table in this section contains private IOD Attributes that describe MEDCOM Object Oriented Graphics (OOG). This module is used when object graphics is drawn on the image and stores the properties of the graphics objects (Line, Circle, Rectangle, Arrow, and so on). So the graphics objects will remain re-animatable even if such an image is transferred via DICOM C-Store SOP Class.

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>Private Creator</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MedCom OOG Type</td>
<td>(0029,xx08)</td>
<td>SIEMENS MEDCOM OOG</td>
<td>1</td>
<td>MEDCOM Object Oriented Graphics (OOG) identification characteristics. Defined Terms: MEDCOM OOG 1</td>
</tr>
<tr>
<td>MedCom OOG Version</td>
<td>(0029,xx09)</td>
<td>SIEMENS MEDCOM OOG</td>
<td>3</td>
<td>Version of MEDCOM OOG Info (0029,xx10) format</td>
</tr>
<tr>
<td>MedCom OOG Infor</td>
<td>(0029,xx10)</td>
<td>SIEMENS MEDCOM OOG</td>
<td>3</td>
<td>MEDCOM Object Oriented Graphics (OOG) data.</td>
</tr>
</tbody>
</table>
The graphics objects are also stored in one Image overlay plane for compatibility with other products which do not support the MedCom OOG module. Any system which does not support this MedCom OOG module has to remove these private attributes when modifying the image overlay data.

4.1.2.6 CSA Non-Image Module

The table in this section contains private IOD attributes that describe CSA Non-Images.

Table 48: CSA Non-Image Module

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>Private Creator</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image Type</td>
<td>(0008,0008)</td>
<td>-</td>
<td>3</td>
<td>Image identification characteristics.</td>
</tr>
<tr>
<td>Acquisition Date</td>
<td>(0008,0022)</td>
<td>-</td>
<td>3</td>
<td>The date the acquisition of data that resulted in this data set started.</td>
</tr>
<tr>
<td>Acquisition Time</td>
<td>(0008,0032)</td>
<td>-</td>
<td>3</td>
<td>The time the acquisition of data that resulted in this data set started.</td>
</tr>
<tr>
<td>Conversion Type</td>
<td>(0008,0064)</td>
<td>-</td>
<td>3</td>
<td>Describes the kind of image conversion. Defined Terms: DV = Digitized Video, DI = Digital Interface, DF = Digitized Film, WSD = Workstation.</td>
</tr>
<tr>
<td>Referenced Image Sequence</td>
<td>(0008,1140)</td>
<td>-</td>
<td>3</td>
<td>A sequence which provides reference to a set of Image SOP Class/Instance identifying other images significantly related to this data set. Encoded as sequence of items: (0008,1150) and (0008,1155)</td>
</tr>
<tr>
<td>Derivation Description</td>
<td>(0008,2111)</td>
<td>-</td>
<td>3</td>
<td>A text description of how this data set was derived.</td>
</tr>
</tbody>
</table>
Table 48: CSA Non-Image Module

<table>
<thead>
<tr>
<th>Attribute Name</th>
<th>Tag</th>
<th>Private Creator</th>
<th>Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Image Sequence</td>
<td>(0008,2112)</td>
<td>-</td>
<td>3</td>
<td>A Sequence which identifies the set of Image SOP Class/Instance pairs of the images which were used to derive this data set. Zero or more Items may be included in this Sequence. Encoded as a Sequence of Items: (0008,1150) and (0008,1155)</td>
</tr>
<tr>
<td>Patient Position</td>
<td>(0018,5100)</td>
<td>-</td>
<td>3</td>
<td>Patient position descriptor relative to the equipment.</td>
</tr>
<tr>
<td>Acquisition Number</td>
<td>(0020,0012)</td>
<td>-</td>
<td>3</td>
<td>A number identifying the gathering of data over a period of time which resulted in this data set.</td>
</tr>
<tr>
<td>Image Number</td>
<td>(0020,0013)</td>
<td>-</td>
<td>3</td>
<td>A number that identifies this data set.</td>
</tr>
<tr>
<td>Frame of Reference UID</td>
<td>(0020,0052)</td>
<td>-</td>
<td>3</td>
<td>Uniquely identifies the frame of reference for a series.</td>
</tr>
<tr>
<td>Image Comments</td>
<td>(0020,4000)</td>
<td>-</td>
<td>3</td>
<td>User-defined comments about the image.</td>
</tr>
<tr>
<td>Quality Control Image</td>
<td>(0028,0300)</td>
<td>-</td>
<td>3</td>
<td>Indicates whether or not the image is a quality control or phantom image. If this attribute is absent, then the image may or may not be a quality control or phantom image. Enumerated Values: YES, NO.</td>
</tr>
<tr>
<td>Burned in Annotation</td>
<td>(0028,0301)</td>
<td>-</td>
<td>3</td>
<td>Indicates whether or not image contains sufficient burned in annotation to identify the patient and date the image was acquired. If this attribute is absent, then the image may or may not contain burned in annotation. Enumerated Values: YES, NO.</td>
</tr>
<tr>
<td>Attribute Name</td>
<td>Tag</td>
<td>Private Creator</td>
<td>Type</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Lossy Image Compression</td>
<td>(0028,2110)</td>
<td>-</td>
<td>3</td>
<td>Specifies whether an image has undergone lossy compression. Enumerated Values: 00 = Image has NOT been subjected to lossy compression, 01 = image has been subjected to lossy compression.</td>
</tr>
<tr>
<td>Lossy Image Compression ratio</td>
<td>(0028,2112)</td>
<td>-</td>
<td>3</td>
<td>Describes the approximate lossy compression ratio(s) that have been applied to this image. May be multi-valued if successive lossy compression steps have been applied.</td>
</tr>
<tr>
<td>CSA Data Type</td>
<td>(0029,xx08)</td>
<td>SIEMENS CSA NON-IMAGE</td>
<td>1</td>
<td>CSA Data identification characteristics. Defined Terms: BSR REPORT = BSR Study Report Data 3D EDITOR 3D FLY PATH = Fly Trough Data 3S FLY VRT = Fly Trough Data 3D FUSION = Fusion Data RAW DATA NUM 4 = NUMARIS/4 Raw Data RAW DATA SOM 5 = SOMARIS/5 Raw Data SPEC NUM 4 = NUMARIS/4 Spectroscopy</td>
</tr>
<tr>
<td>CSA Data Version</td>
<td>(0029,xx09)</td>
<td>SIEMENS CSA NON-IMAGE</td>
<td>3</td>
<td>Version of CSA Data Info (0029,xx10) format and CSA Non-Image data (7FE1,xx10) format</td>
</tr>
<tr>
<td>CSA Data Info</td>
<td>(0029,xx10)</td>
<td>SIEMENS CSA NON-IMAGE</td>
<td>3</td>
<td>Information to describe the CSA Data (7FE1,xx10). The value of the attribute CSA Data Info (0029,xx10) can be built up in each user defined format.</td>
</tr>
<tr>
<td>CSA Data</td>
<td>(7FE1,xx10)</td>
<td>SIEMENS CSA NON-IMAGE</td>
<td>1</td>
<td>Binary data as byte stream.</td>
</tr>
</tbody>
</table>
4.1.2.7 Description of Private Elements

Table 49: Registry of DICOM Data Elements

<table>
<thead>
<tr>
<th>Tag</th>
<th>Private Owner Code</th>
<th>Name</th>
<th>VR</th>
<th>VM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0029,xx08)</td>
<td>SIEMENS CSA HEADER</td>
<td>CSA Image Header Type</td>
<td>CS</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx09)</td>
<td>SIEMENS CSA HEADER</td>
<td>CSA Image Header Version</td>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx10)</td>
<td>SIEMENS CSA HEADER</td>
<td>CSA Image Header Info</td>
<td>OB</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx18)</td>
<td>SIEMENS CSA HEADER</td>
<td>CSA Series Header Type</td>
<td>CS</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx19)</td>
<td>SIEMENS CSA HEADER</td>
<td>CSA Series Header Version</td>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx20)</td>
<td>SIEMENS CSA HEADER</td>
<td>CSA Series Header Info</td>
<td>OB</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx08)</td>
<td>SIEMENS CSA NON-IMAGE</td>
<td>CSA Data Type</td>
<td>CS</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx09)</td>
<td>SIEMENS CSA NON-IMAGE</td>
<td>CSA Data Version</td>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx10)</td>
<td>SIEMENS CSA NON-IMAGE</td>
<td>CSA Data Info</td>
<td>OB</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx08)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>MedCom Header Type</td>
<td>CS</td>
<td>1</td>
</tr>
<tr>
<td>(0029,0009)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>MedCom Header Version</td>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>(0029,0010)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>MedCom Header Info</td>
<td>OB</td>
<td>1</td>
</tr>
<tr>
<td>(0029,0020)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>MedCom History Information</td>
<td>OB</td>
<td>1</td>
</tr>
<tr>
<td>(0029,0031)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>PMTF Information 1</td>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx32)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>PMTF Information 2</td>
<td>UL</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx33)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>PMTF Information 3</td>
<td>UL</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx34)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>PMTF Information 4</td>
<td>CS</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx35)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>PMTF Information 5</td>
<td>UL</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 49: Registry of DICOM Data Elements

<table>
<thead>
<tr>
<th>Tag</th>
<th>Private Owner Code</th>
<th>Name</th>
<th>VR</th>
<th>VM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0029,xx40)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>Application Header Sequence</td>
<td>SQ</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx41)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>Application Header Type</td>
<td>CS</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx42)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>Application Header ID</td>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx43)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>Application Header Version</td>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx44)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>Application Header Info</td>
<td>OB</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx50)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>Workflow Control Flags</td>
<td>LO</td>
<td>8</td>
</tr>
<tr>
<td>(0029,xx51)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>Archive Management Flag Keep Online</td>
<td>CS</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx52)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>Archive Management Flag Do Not Archive</td>
<td>CS</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx53)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>Image Location Status</td>
<td>CS</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx54)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>Estimated Retrieve Time</td>
<td>DS</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx55)</td>
<td>SIEMENS MEDCOM HEADER</td>
<td>Data Size of Retrieved Images</td>
<td>DS</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx08)</td>
<td>SIEMENS MEDCOM OOG</td>
<td>MEDCOM OOG Type</td>
<td>CS</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx09)</td>
<td>SIEMENS MEDCOM OOG</td>
<td>MEDCOM OOG Version</td>
<td>LO</td>
<td>1</td>
</tr>
<tr>
<td>(0029,xx10)</td>
<td>SIEMENS MEDCOM OOG</td>
<td>MEDCOM OOG Info</td>
<td>OB</td>
<td>1</td>
</tr>
<tr>
<td>(7FE1,xx10)</td>
<td>SIEMENS CSA NON-IMAGE</td>
<td>CSA Data</td>
<td>OB</td>
<td>1</td>
</tr>
</tbody>
</table>

4.2 Private Transfer Syntaxes

None.
5 Configuration

5.1 AE Title / Presentation Address Mapping
The Siemens MagicView 1000 maps Application Entity Titles to host names and port numbers via an internal configuration method. The IP addresses for the host names are determined using standard system calls.

For each DICOM MagicView 1000 default unique Application Entity Titles are assigned using the following mechanism:

Each Application Entity Title starts with a unique 10 character string assigned to a DICOM MagicView node. This string is also used as the first 10 characters of each PACSnet Logical Address (PLA) of the SIENET processes on the Siemens MagicView 1000. An example of such a string is '049SA1DC39'.

If <AEroot> describes such a 10 character unique string assigned to this specific DICOM MagicView, the DICOM Application Entity title of DRCV and FOS (Storage AE Title) is:

\[<\text{AE}\text{root}>\text{DRSP port number }50082 \]

The DICOM Application Entity Title of DNES (Storage Commitment) is:

\[<\text{AE}\text{root}>\text{DNES port number }60034 \]

The DICOM Application Entity Title of the DQRY and DQUS (Query/Retrieve AE Title) is:

\[<\text{AE}\text{root}>\text{DQRY port number }50089 \]

The DICOM Application Entity Title of RIS (Report C-Find) is:

\[<\text{AE}\text{root}>\text{RIC0 port number }60005 \]

The DICOM Application Entity Title of the Printer AET is:

\[<\text{AE}\text{root}>\text{DBPR port number }60036 \]

The port number and AE Title of each process can be changed with the SIENET Installation Tool. The port numbers and AETs of DRCV and DQRY must be different.

The DICOM Application Entity Title for the Verification SCU is SIENET_C_ECHO.

5.2 Configurable Parameters
Application Entity Titles, host names and port numbers are configurable values.

The following parameters can be configured with the SIENET Installation Tool. The Installation Tool also uses some default parameters:

- patient name normalization
- folder merge timeout for DICOM receiver: 0 sec (each image is a new folder)

Further parameters can be configured in project specific solutions:

- number of folder send retries: 5
- time between folder send retries: 10 min
- maximum number of parallel image transfers: 2
- case-insensitive matching of patient name
- Query SCP supports unrestricted queries, see 2.3.3.3
- no new association for DICOM Storage Commitment N-Event Report requests
- time-outs for DICOM Basic Print, see 2.2.6.6
- time-outs for DICOM Query/Retrieve, see 2.2.4.3 and 2.2.5.3
- time-outs and number of retries for DICOM Storage Commitment SCU, see 2.2.3.1
- number of retries and retry interval for DICOM Storage Commitment SCP, see 2.3.5.3
- display of studies in query matches list, see 2.2.4.3
- relational query model, see 2.2.2.3
- abort association in case of DICOM receiver returns the status code 'Refused' or 'Error', see 2.3.2.3
6 Support of Extended Character Sets

The Siemens DICOM application supports the ISO 8859 Latin 1 (ISO-IR 100) character set.
Copyright © Siemens AG Medical Solutions, Health Services, 2006. All rights reserved.

Alle Rechte vorbehalten.

Siemens AG Medical Solutions, Health Services
Henkestr. 127, D-91052 Erlangen