SOMATOM go.Sim
Simulation reinvented
siemens-healthineers.com/somatom-go-sim
Staging competitive in a growing market

Today’s healthcare providers are under increasing pressure to deliver radiotherapy to more patients than ever before. This demands innovative solutions that will allow you to work more efficiently and lay the foundations for the best possible treatments and optimal patient outcomes.

A growing problem

With cancer cases expected to surge by 31% between 2018 and 2030, RT departments will see a huge rise in the number of patients requiring their support.

An imperfect workflow

The rise in RT patient numbers will add further pressure to the already complex and challenging RT workflow. Patients go through a multi-step process that involves multiple data exchanges. At Siemens Healthineers, treatment preparation is our area of expertise. That’s why we want to optimise this part of the process by addressing the lack of integration in existing systems.

The challenges in CT Simulation

Precise CT simulation requires fail-safe, reproducible, and streamlined workflows. SOMATOM go.Sim is a single, integrated software and hardware solution that covers the entire CT simulation process. By simplifying your tasks and reducing the likelihood of errors, it allows you to focus on what matters most: your patients.

As well as incorporating the patient marking process, our understanding of integration extends to every aspect of CT simulation. SOMATOM go.Sim delivers image optimisation for target delineation, target margins, and even autocontouring – and by integrating the power of AI, this CT simulator reduces the sources of variability in your starting point for treatment planning.

SOMATOM go.Sim creates a calming environment for patients, and its simple operating concept allows staff to spend more time at their side. One user interface and a flexible training plan shorten the operator learning curve, while a single vendor service contract relieves the burden on administrators.

Welcome to a new world of CT simulation.
Be certain in simulation

Integrated components are the key to error-free CT simulation. SOMATOM go.Sim gives you certainty with a streamlined workflow that is exceptionally smooth, extremely fast, and able to deliver reproducible and user-independent results.

Drive precision for contouring

To be confident that you are working from a consistent starting point, you need reliable information about tumors and surrounding tissue for every patient. SOMATOM go.Sim provides precise contouring and generates the patient modeling data you need.

Care for patients and users

Reducing pressure on operators gives you time to focus on patients and high-quality results. Making patients feel at ease leads to more successful CT simulation. SOMATOM go.Sim is built on a concept that cares for the needs of both patients and users.

Key technical data

<table>
<thead>
<tr>
<th>SCAT</th>
<th>Acquired slices/reconstructed slices</th>
<th>FOV coverage</th>
<th>Acquire time</th>
<th>Power</th>
<th>Max. table load</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 cm</td>
<td>32 / 64</td>
<td>1.92 cm</td>
<td>0.355, 0.5, 1.0 s</td>
<td>75 kW</td>
<td>227 / 3075 kg (TG-66 compliant tables)</td>
</tr>
</tbody>
</table>

Take integration further. Go Direct.

- **Image optimization specifically for consistent OAR contours**
 - DirectORGANS offers the world’s first contours generated by a CT simulator using an optimized reconstruction, and deep learning.

- **Minimize sources of errors in QA**
 - Direct Laser QA provides an automated laser QA procedure with no need to switch workstations or interfaces with integrated patient-marking lasers.

- **Personalize images for target contouring**
 - DirectDensity allows you to tailor kV settings for each patient, and eliminates the need for tube voltage-dependent calibration in the TPS.

- **Reduce complexity and errors in laser steering**
 - Direct Laser Steering, combined with the mobile tablet, enables a fast, seamless, and less error-prone workflow for patient marking.

- **Simplify the current practice for particle therapy**
 - DirectSPR solves challenges and makes stopping power images directly available for automatic, calibration-free dose calculation.

Other Features:

- **iMAR** is our proven metal artifact reduction algorithm that gives you confidence in tumor visualization.
- **Respiratory Motion Management** with 1611 ID provides automated and reproducible results independent of the operator.
- **TwinSpiral Dual Energy** delivers crisp images with the option of even sharper contrast for excellent soft-tissue visualization.

Powered by co-creation

To explore what really matters to you, we spoke to over 300 RT specialists: radiation oncologists, medical physicists, dosimetrists, RTTs, and financial decision makers. We learned about your biggest challenges and created a CT simulator to address them.
Mobile workflow

Go for a trendsetting mobile workflow

Remote control
Table movement, mobile scan

Mobile tablet
Operate the system from wherever you are

Direct Laser
Direct Laser steering without coordinate transfer

The new mobile workflow is an integrated solution that makes CT simulation smoother and less error-prone. The system contains everything you need, and you operate it using a single mobile tablet. This highly innovative setup gives you more time with patients, unparalleled flexibility for your simulation tasks, and greater TEO transparency.

In short, the new mobile workflow supports certainty in simulation and care for patients and users.

Be certain in simulation
- Straightforward patient marking with a single system
- Correct laser positioning with the integrated Direct Laser
- Guidance with the green GO button

Care for patients and users
- Better patient experience with a co-created, patient-centric design
- Improved environment for users and greater TEO transparency with an all-in-one solution

DirectORGANS (Optimized Reconstruction based Generative Adversarial Networks) is a revolutionary, AI-based organs-at-risk (OAR) contouring solution. It optimizes images designed for the deep-learning algorithm and delivers consistent OAR contours. The result reduces unwarranted variations with high-quality contours that approach the level of consensus-based contours.

Experience the world’s first contours generated by a CT simulator using a dedicated reconstruction.

Drive precision for contouring
- OAR contouring directly at the system, no need for manual interaction
- Leverage the power of optimized recon and deep learning to streamline organs-at-risk contouring
- Reduce unwarranted variations with high-quality contours that approach the level of consensus-based contours

DirectORGANS

Go for precision with the world’s first contours generated by a CT simulator

Input for RT professional (images)
Input for algorithm (dedicated recon)

Aliased Deep Learning contours trained by GANS

Guided path by GO with green

In short, the new mobile workflow supports certainty in simulation and cares for patients and users.
On account of certain regional limitations of sales rights and service availability, we cannot guarantee that all products included in this brochure are available through the Siemens sales organization worldwide.

Availability and packaging may vary by country and is subject to change without prior notice. Some or all of the features and products described herein may not be available in the United States.

The information in this document contains general technical descriptions of specifications and options as well as standard and optional features that do not always have to be present in individual cases.

Siemens reserves the right to modify the design, packaging, specifications, and options described herein without prior notice. Please contact your local Siemens sales representative for the most current information.

Note: Any technical data contained in this document may vary within defined tolerances. Original images always lose a certain amount of detail when reproduced.

4 Kelly E et al. Reduced patient anxiety as a result of radiation therapist-led psychosocial support: a systematic review, J Med Radiat Sci Sep; 64(3): 220–231
5 Optional
6 As shown by measurements with a Gammex 467 Tissue Characterization Phantom comparing T-standard reconstruction and DirectDensity reconstruction. Image value to relative electron/mass density conversion for the standard reconstruction was based on a two-linear-equations approach with individual calibration for each tube voltage. For DirectDensity images, a single tube-voltage-independent linear conversion was used. DirectDensity reconstruction is designed for use in Radiation Therapy Planning (RTP) only. DirectDensity reconstruction is not intended to be used for diagnostic imaging.
7 Volume rendered image is for illustration purposes only and not part of DirectORGANS
8 Optional. syngo.via and syngo.via CT Dual Energy DirectSPR is required
9 Up to 3 additional tablets are optional