Furthermore, all this information can be acquired either as a contrast-media free assessment of the smaller vessels or even as a whole-body scan, reflecting the clinical status of cardiac function. The visualization of vessels was an integral part of the daily routine of a radiology department. Since MRI, however, compared to conventional DSA or CTA – we can now acquire detailed information about the vessels without the need to expose the patient to radiation. We have yet to mention the biggest advantage of MRI: its ability to provide information about the tissue itself and its functional state e.g. for evaluation of brain damage in case of stroke or heart muscle viability in case of coronary artery disease. This is beyond what any other clinically available imaging method can achieve.

One important focus of this issue is the practical implementation of cardiac MRI. Back in 2007 we reported about the current clinical status of cardiac MRI and distributed the recommended protocols of the Society of Cardiovascular Magnetic Resonance for your MR scanner. This latest issue contains an update of these protocols for the syngo MR B17 and also a selection of new clinical information which will surely influence our daily routine in cardiac imaging.
The Editorial Team

We appreciate your comments.
Please contact us at magnetomworld.med@siemens.com
Further clinical information

Visit the MAGNETOM World Internet pages at www.siemens.com/magnetom-world for further clinical information and talks by international experts. Here you will find application tips such as positioning videos, short videos on software applications, case reports, protocols and much more. From basic MRI information up to research there is relevant clinical information right at your fingertips.

Clinical Cardiovascular MRI

6 Cardiovascular Magnetic Resonance – Update 2010
A selection of interesting new data by Florian von Knobelsdorff-Brenkenhoff, et al.

36 Case Report: Cardiac Imaging with MAGNETOM ESSENZA
Cardiac MRI of Anteroapical Infarction in Patient with Left Ventricular Aneurysm with Apical Thrombus / Tako-Tsubo like Syndrome by G. Hadjidekov, G. Tonev

41 Assessment and Classification of Peripheral Vascular Anomalies by Time-Resolved MRA using TWIST by Ulrich Kramer, et al.

46 4D Flow MR Imaging by Alex Barker, et al.

Clinical Abdomen/Pelvis

6 Case Report: Combined Assessment of Haemodynamics and Vessel Architecture in a case of Brain AVM by Jens Fiehler

56 Perfusion Imaging and Stroke by Pavlina Polaskova, et al.

Clinical How I do it

20 SCMR recommended CMR protocols and CMR Users Guide

40 Case Report: Cardiac Imaging with MAGNETOM ESSENZA

The information presented in MAGNETOM Flash is for illustration only and is not intended to be relied upon by the reader for instruction as to the practice of medicine. Any health care practitioner reading this information is reminded that they must use their own learning, training and expertise in dealing with their individual patients. This material does not substitute for that duty and it is not intended by Siemens Medical Solutions to be used for any purpose in that regard. The treating physician bears the sole responsibility for the diagnosis and treatment of patients, including drugs and doses prescribed in connection with such use. The Operating Instructions must always be strictly followed when operating the MR System. The source for the technical data is the corresponding data sheets. Not for distribution in the US.
Cardiovascular Magnetic Resonance – Update 2010
A Selection of Interesting new Data

Florian von Knobelsdorff-Brenkenhoff, M.D.; Jeannette Schulz-Menger, M.D.
Experimntal and Clinical Research Center, Medical University Berlin, Charité Campus Buch and HELIOS Klinikum Berlin Buch, Dept. of Cardiology and Nephrology, Berlin, Germany

Introduction
In 2007, MAGNETOM Flash devoted a complete issue (#36) to Cardiovascular Magnetic Resonance Imaging (CMR). Since then, the acceptance of CMR as a unique and valuable imaging tool in clinical cardiology and research has further increased. More recently, large international societies launched an update of the expert consensus document on CMR that provides a perspective on the current state of this evolving technique [1]. Furthermore, attempts to standardize CMR training, protocols, examinations and reports have been published within the last years to achieve a homogeneous high-level of diagnostic testing within the last years to achieve a homogenous high-level of diagnostic testing within the last years to achieve a homogenous high-level of diagnostic testing within the last years to achieve a homogenous high-level of diagnostic testing within the last years to achieve a homogenous high-level of diagnostic testing.

Many innovations have entered clinical routine, and many more ideas are looming on the (pre-)clinical horizon. It would be beyond the scope of the present article to deal with all the news in all the various CMR fields since 2007 (we recommend an excellent recently published review article [7]). Rather, we intend to give a short overview of some important highlights and studies, and to touch on some fascinating future trends that may further emphasize the significance of CMR over the next few years.

News on ischemic heart disease
CMR stress testing
CMR stress tests, both using the analysis of first-pass perfusion during adenosine infusion, and of wall motion abnormalities during dobutamine infusion, have entered clinical routine and are nowadays accepted as very accurate methods (also see a state-of-the-art paper regarding perfusion imaging [10]). The imaging techniques and protocols are widely unchanged from those described in the articles by Markus Joehms et al. and by Andrea Araia in MAGNETOM Flash #36. However, important data regarding the diagnostic performance and the prognostic implication have been published since then. Nandalur et al. published a large meta-analysis in 2007 including 1516 patients with perfusion imaging and 754 patients with wall motion abnormality imaging. They found a sensitivity/speciﬁcity of 91% / 81% and 83% / 86%, respectively, to detect relevant coronary artery stenosis on a patient level [11]. Moreover, in 2008 Schwitter et al. published the first multi-centre multi-vendor study comparing CMR stress perfusion imaging with SPECT (single-photon emission computed tomography) stress perfusion imaging (called “MR-IMPACT”). This important study demonstrated that CMR is either equivalent or superior to SPECT regarding the diagnostic accuracy to detect coronary artery stenoses ≥50% assessed by invasive coronary angiography [12]. Regarding CMR stress perfusion imaging, most studies had excluded patients with coronary artery bypass grafts due to potentially altered myocardial contrast kinetics owing to more complex myocardial perfusion and different distances of the contrast bolus through different bypasses and native coronary vessels. Recently, two larger studies demonstrated that even for patients after surgical revascularization, stress perfusion CMR yields good diagnostic accuracy for the detection and localization of signiﬁcant stenoses, even though sensitivity is reduced compared with published data in patients without coronary bypass [13, 14]. Regarding the diagnostic impact of CMR stress testing, Jahneke et al. reported that the 3-year event-free survival was 99.2% for patients with normal stress CMR (both adenosine and dobutamine) and 83.5% for those with abnormal tests. Univariate analysis showed ischemia identiﬁed by CMR to be predictive of cardiac events (hazard ratio 12.5) [15]. The addition of late gadolinium enhancement (LGE) imaging to stress perfusion further improves the risk stratiﬁcation for patients with symptoms of ischemia. Steel et al. showed that the presence of a perfusion deﬁcit or myocardial scar both maintained a >3-fold association with cardiac death or acute myocardial infarction, whereas in patients without a history of myocardial infarction, who had negative stress CMR, LGE presence was associated with a >11-fold hazards increase in death and myocardial infarction [16]. CMR stress testing can be regarded as a very safe method. In 3474 stress tests (both adenosine and dobutamine) included in the German CMR registry, only ﬁve severe (deﬁned as death, resuscitation, or any other condition related to the CMR procedure that required monitoring as an inpatient for at least 1 night after the CMR scan) adverse events occurred (0.14%). These data are in the range of other stress imaging modalities, like dobutamine stress echoangiography (potentially life-threatening complications in 0.2% in a recent review [17]).

The differentiation of true perfusion defects and dark-rim artefacts during CMR stress testing is still sometimes challenging. Apart from using interpretation algorithms – such as proposed by the team from the Duke University [18] – one future solution to facilitate the correct diagnosis may be the use of novel accelerated high spatial-resolution imaging techniques, and the step towards higher B, field strength, like 3T [19, 20]. Thus, further innovations are expected to further increase the diagnostic accuracy of CMR stress testing and promote its widespread use in clinical routine.

CMR in acute myocardial infarction
CMR has also obtained an important role in patients with acute myocardial infarction. Recent review articles summarized...
A 59-year-old man complained about dyspnoea and chest pain after mild physical exertion. CMR with adenosine stress perfusion showed a perfusion deficit predominantly in the septum (2A–C). Coronary angiography revealed a significant stenosis of the left anterior descending, which was treated by stent implantation.

The capabilities of CMR in acute coronary syndrome [21], and in myocardial infarction in general [22]. Apart from demonstrating motion abnormalities of the infarcted wall with high-blood-tissue contrast for all 17 left ventricular segments in standardized planes, CMR provides novel information about the tissue alterations during acute myocardial infarction by use of T2 and T1-weighted imaging. T1-weighted imaging: late enhancement imaging after intravenous administration of gadolinium contrast depicts irreversible injured tissue. The principles and the imaging technique (segmented inversion recovery TurboFlash) are still widely unchanged from the report by Igor Klem in MAGNETOM Flash #36. The technique is commonly regarded as robust, very accurate and observer-independent for the detection of infarction in both the acute and chronic setting, this has recently been confirmed in a large multicentre study [23]. T2-weighted imaging: Abdel-Aty et al. recently gave the evidence in an animal model that T2-weighted imaging of edema detects acute ischemic myocyte injury before the onset of irreversible injury [24]. The bright area in T2-weighted imaging represents the area-at-risk during myocardial infarction. By combining T2-weighted imaging with LGE, CMR offers the unique possibility to depict both reversible and irreversible injury with very high sensitivity and specificity. This allows for quantifying the extent of the salvaged area after revascularization as an important parameter for clinical decision making and research [25]. By using these techniques, Francone et al. demonstrated that in patients with ST-elevation myocardial infarction (STEMI) treated with primary percutaneous coronary intervention, the time to reperfusion determines the extent of reversible and irreversible myocardial injury. In particular, salvaged myocardium was markedly reduced when reperfusion occurred >90 min of coronary occlusion [26]. Eitel et al. showed that the so-called myocardial salvage index, which is calculated as area at risk minus infarct size divided by the area at risk, predicts the outcome in acute reperfüsed STEMI [27]. Even in patients with N(non)-STEMI, T2-weighted imaging seems to add prognostic information. In a study by Raman et al., patients with edema showed a higher hazard of a cardiovascular event or death within 6 months compared with those without edema [28].

T2-weighted imaging has also been introduced as a method to assess the presence of myocardial haemorrhage, visible as hypointense core within the hyperintense edema. In a study by Ganame et al., myocardial haemorrhage was an independent predictor of adverse left ventricular remodelling at four months, independent of the initial infarct size [29]. The presence of microvascular obstruction, visible as hypointense core within the bright zones of LGE, or by early gadolinium enhancement imaging at 1 to 2 minutes after injection, has also turned out to be a marker for unfavourable cardiac remodelling and prognosis. Nijveldt et al. showed that in patients after revascularized acute myocardial infarction, the presence or absence of microvascular obstruction proved a more powerful predictor of global and regional functional recovery than other characteristics like TIMI flow grade, myocardial blush grade, ST-segment resolution and even infarct size and transmural extent as assessed by CMR [30]. In addition, studies investigated the value of CMR in emergency patients. Here, T2-weighted imaging seems to be helpful in patients presenting with acute chest pain to the emergency room to decide whether coronary angiography should be performed or not [31]. Finally, CMR has been proven to be a valuable tool to identify the underlying disease in patients presenting with acute coronary syndrome, but exhibit normal coronary arteries during heart catheterization – this is a non-trivial proportion of up to 10% of patients initially diagnosed with STEMI, and 32% with acute coronary syndrome [22]. CMR helps to find the correct diagnosis: some suffer from Takotsubo cardiomyopathy with its typical reversible wall motion abnormalities and the absence of LGE; some have myocarditis with its typical subepicardial and intramural LGE lesions, and some exhibit LGE lesions fitting to myocardial infarction, possibly indicating spontaneous lysis [32, 33].
CMR in chronic myocardial infarction

In chronic myocardial infarction the importance of CMR is mainly based on the LGE imaging sequence. The prediction of functional recovery in ischemic disease by CMR via assessing the transmurality of LGE has widely replaced dobutamine echocardiography and nuclear medicine and become accepted as the clinical gold standard [34]. Given that quantification of infarct size by LGE is highly reproducible, this technique provides a useful surrogate end point for clinical trials comparing various infarction therapies [22, 35].

Kwong et al. found that in patients with ischemic cardiomyopathy and severely reduced ejection fraction, a greater extent of myocardial scar, delineated by LGE CMR, was associated with increased mortality [36]. Furthermore, the composition of LGE seems to influence the incidence of ventricular arrhythmia with subsequent ICD therapy (as surrogate of sudden cardiac death) among other clinical and CMR variables [39]. Similar results were reported by Schmidt et al. regarding enhanced susceptibility to programmed electrical stimulation [40]. In addition, papillary muscles that lie within an infarct zone might give rise to ventricular arrhythmia.

A 69-year-old man with chronic myocardial infarction and moderate mitral regurgitation. LGE imaging showed transmural infarction of the lateral wall with total scarring of the inferoseptal papillary muscle.

A 70-year-old man with ischemic cardiomyopathy after anterior and posterior infarction underwent CMR. LGE imaging showed extensive myocardial scarring, including the free wall of the right ventricle (arrow). Furthermore, a thrombus in the left ventricle is visible (asterisk).

A 27-year-old man presented 5 years after severe embolic myocardial infarction during aortic endocarditis. Two-chamber view with LGE technique depicted transmural scarring of the anterior wall and the apex and an apical thrombus. Two months following oral anticoagulation, the thrombus had disappeared.

A 65-year-old woman complained of chest pain, which started quite strongly two years before, and since then appeared repeatedly during exertion. CMR showed a large aneurysm of the inferolateral wall (7A). LGE imaging (7B) depicted thrombotic material in the aneurysm, which is identified less clear by SSFP (7A).

A 23-year-old subject presented with severe chest pain and ST-elevation in all leads, but no risk-factors for coronary artery disease. The immediately performed CMR showed a typical pattern for acute myocarditis. 8A Short axis SSFP in enddiastole. 8B Short axis T2-weighted image. 8C Short axis with late enhancement. 8D Four-chamber view with late enhancement.
A 51-year-old man complained about dyspnea at mild exertion. CMR revealed a markedly dilated left ventricle with severely depressed systolic function. Dilated cardiomyopathy is one common cause for heart failure. Comprehensive noninvasive imaging combining CMR and PET (positron emission tomography) may give new insights into pathophysiology [52]. Furthermore, Hombach et al. reported that the cardiac index and right ventricular enddiastolic volume index derived from CMR provided prognostic impact for cardiac death in addition to QRS prolongation from conventional surface ECG and diabetes mellitus in patients with dilated cardiomyopathy. That finding underlines the impact of cine-based right ventricular quantification [53]. The three-dimensional quantification of the right ventricle is also a new, clearly defined criterion in the diagnostic guidelines for arrhythmogenic right ventricular cardiomyopathy (ARVC) published in 2010, whereas the CMR-driven tissue characterization failed to be included [54]. Nevertheless, there are different publications investigating the relation between scar-related right ventricular tachycardia and long-term outcome [55], underlining the need for a robust technique of LGE-sequences with fat-suppression, as recently described by Peter Killman [56]. The systematic review of the phenotype will improve the understanding of the disease and will open the door to an earlier diagnosis also in case of relatives [57]. A large amount of papers discuss the differentiation of left-ventricular hypertrophy using CMR with the focus on hypertrophic cardiomyopathy (HCM). It is well-known that LGE already occurs in asymptomatic HCM-patients. However, such focal findings are also present in patients with other types of left ventricular hypertrophy and normal coronary arteries, like arterial hypertension, aortic stenosis or Fabry's disease [58]. A different pattern of LGE is described in patients with increased left ventricular mass caused by amyloidosis. Thereby, the gadolinium kinetics seems to reflect the severity of the cardiac amyloid burden [59]. Regarding HCM, Rubinstein et al. demonstrated that LGE was more prevalent in gene-positive HCM-patients. Furthermore, they found a strong association between LGE and surrogates of arrhythmia [60]. Several other studies demonstrated a correlation between the presence of LGE and mortality [61]. Dhanola et al. recently reported that HCM patients with LGE have a higher mortality due of prognostic value. Therefore, a substantial number of papers (nearly 600 during the last 2 years) were published regarding CMR and non-ischemic CMP. The following paragraph can only highlight a minority. LGE imaging is established in ischemic heart disease, and is playing an increasing role in the assessment of CMP. Due to the intrinsic properties of the method, LGE shows only focal fibrosis, whereas it is well-known from (patho-)physiology, that diffuse fibrosis plays an important role for disease progression. Flett et al. recently introduced an interesting new equilibrium approach, based on a contrast-infusion, to quantify diffuse fibrosis [44]. 12-weighted images provide useful incremental diagnostic and prognostic information in a variety of clinical settings associated with suspected acute myocardial infarction. A detailed review was given recently by Matthias Friedrich [45]. Especially the capability to differentiate reversible and irreversible injury by using 12-weighted images in combination with contrast-enhanced CMR underlines the unique possibility of CMR. The impact of such a comprehensive approach could be shown for myocarditis [46]. Based on this comprehensive approach, consensus criteria to assess myocarditis by CMR (Lake-Louise Criteria) were published in 2009 [47]. Myocardial injury could also be detected by using CMR in various inflammatory diseases and circumstances, like Churg-Strauss syndrome, Lupus erythematosus or following heart transplantation [48-50]. Moreover, there are first results that the combined use of CMR and endomyocardial biopsy yields a diagnostic synergy in troponin-positive patients with normal coronary arteries [51]. News on non-ischemic heart disease Although cardiomyopathies (CMP) account for a considerable proportion of heart failure cases, both, diagnosis and treatment as well as the management of these patients still remain challenging. CMR offers a comprehensive assessment of heart failure patients and is now the gold standard imaging technique to assess myocardial anatomy, regional and global function, and viability [43]. The method has the unique potential to differentiate myocardial injury and is expected to be of prognostic value. Therefore, a substantial number of papers (nearly 600 during the last 2 years) were published regarding CMR and non-ischemic CMP. The following paragraph can only highlight a minority. LGE imaging is established in ischemic heart disease, and is playing an increasing role in the assessment of CMP. Due to the intrinsic properties of the method, LGE shows only focal fibrosis, whereas it is well-known from (patho-)physiology, that diffuse fibrosis plays an important role for disease progression. Flett et al. recently introduced an interesting new equilibrium approach, based on a contrast-infusion, to quantify diffuse fibrosis [44]. 12-weighted images provide useful incremental diagnostic and prognostic information in a variety of clinical settings associated with suspected acute myocardial infarction. A detailed review was given recently by Matthias Friedrich [45]. Especially the capability to differentiate reversible and irreversible injury by using 12-weighted images in combination with contrast-enhanced CMR underlines the unique possibility of CMR. The impact of such a comprehensive approach could be shown for myocarditis [46]. Based on this comprehensive approach, consensus criteria to assess myocarditis by CMR (Lake-Louise Criteria) were published in 2009 [47]. Myocardial injury could also be detected by using CMR in various inflammatory diseases and circumstances, like Churg-Strauss syndrome, Lupus erythematosus or following heart transplantation [48-50]. Moreover, there are first results that the combined use of CMR and endomyocardial biopsy yields a diagnostic synergy in troponin-positive patients with normal coronary arteries [51]. Dilated cardiomyopathy is one common cause for heart failure. Comprehensive noninvasive imaging combining CMR and PET (positron emission tomography) may give new insights into pathophysiology [52]. Furthermore, Hombach et al. reported that the cardiac index and right ventricular enddiastolic volume index derived from CMR provided prognostic impact for cardiac death in addition to QRS prolongation from conventional surface ECG and diabetes mellitus in patients with dilated cardiomyopathy. That finding underlines the impact of cine-based right ventricular quantification [53]. The threedimensional quantification of the right ventricle is also a new, clearly defined criterion in the diagnostic guidelines for arrhythmogenic right ventricular cardiomyopathy (ARVC) published in 2010, whereas the CMR-driven tissue characterization failed to be included [54]. Nevertheless, there are different publications investigating the relation between scar-related right ventricular tachycardia and long-term outcome [55], underlining the need for a robust technique of LGE-sequences with fat-suppression, as recently described by Peter Killman [56]. The systematic review of the phenotype will improve the understanding of the disease and will open the door to an earlier diagnosis also in case of relatives [57]. A large amount of papers discuss the differentiation of left-ventricular hypertrophy using CMR with the focus on hypertrophic cardiomyopathy (HCM). It is well-known that LGE already occurs in asymptomatic HCM-patients. However, such focal findings are also present in patients with other types of left ventricular hypertrophy and normal coronary arteries, like arterial hypertension, aortic stenosis or Fabry’s disease [58]. A different pattern of LGE is described in patients with increased left ventricular mass caused by amyloidosis. Thereby, the gadolinium kinetics seems to reflect the severity of the cardiac amyloid burden [59]. Regarding HCM, Rubinstein et al. demonstrated that LGE was more prevalent in gene-positive HCM-patients. Furthermore, they found a strong association between LGE and surrogates of arrhythmia [60]. Several other studies demonstrated a correlation between the presence of LGE and mortality [61]. Dhanola et al. recently reported that HCM patients with LGE have a higher mortality due
Cardiovascular MRI

Three-chamber view obtained using the gold-standard, SSFP cine imaging at 1.5 Tesla, 12B

Aortic bioprosthesis
Mild aortic stenosis
Moderate mitral valve stenosis
Quadricuspid aortic valve with central

12F
12I
12H
34x68
echocardiography [65].

the extent of wall thickness is underesti-

of left ventricular hypertrophy in which
in HCM, especially in case of family-
Finally, already cine-CMR alone is helpful
respect to LGE, an actual excellent review
Nevertheless, at present the data regard-
to development of heart failure [62].

No other, at present the data regarding
LGE and sudden cardiac death are
still conflicting. In the near future, the
results of ongoing and planned multi-
centre trials, like one project integrated
in the EuroCMR registry [63], will clarify
this important question. Regarding risk
stratification in HCM in general and with
respect to LGE, an actual excellent review
by Barry J. Maron is worth reading [64].
Finally, already cine-CMR alone is helpful
in HCM, especially in case of family-
screening, because CMR identifies regions
of left ventricular hypertrophy in which
the extent of wall thickness is underestimated
with traditional two-dimensional echocardiography [65].

News on valvular heart disease

The assessment of valvular heart disease using CMR is still mainly based on valvu-
lar visualization using cine imaging, and
flow measurements using phase-contrast,
as already described by Brett Cowan et al.
in MAGNETOM Flash #36. Recently, Cawley et al. published a review article
regarding this topic [43]. In addition,
there are some important new aspects:
Rudolph et al. found focal LGE in the
left ventricular myocardium in 62% of
patients with left ventricular hyper-
trrophy caused by aortic stenosis [44].
Weidemann et al. reported that subjects
with aortic stenosis, who exhibited
severe myocardial fibrosis as detected by
CMR, showed less improvement in NYHA
functional class and higher mortality after
aortic valve replacement compared to
those with mild or no myocardial fibrosis
[45]. Azevedo et al. reported similar
results for patients with aortic stenosis
and aortic regurgitation undergoing
aortic valve replacement [46]. Thus, LGE
CMR may be a novel tool for risk stratifi-
cation and optimal timing of surgery
in aortic valve disease. Regarding the
mitral valve, Chan et al. published a valu-
able article on how to assess mitral
regurgitation using CMR [47]. Han et al.
reported that CMR can identify mitral
valve prolapse by the same echocardioc-
ographic criteria. Furthermore, they found
myocardial fibrosis involving the papil-
lar muscle associated with complex ven-
tricular arrhythmias in a subgroup of
subjects [48]. The seventy of posterior
papillary muscle region scarring as
assessed by LGE seems to impact on
the surgical success after mitral repair.
Flynn et al. therefore propose that pre-
operative scar assessing using CMR may
help to find the best surgical approach
in patients undergoing mitral valve oper-
ation [49]. Moreover, with increasing
use of transcather interventions to treat
mitral valve disease, the exact visualiza-
tion of the complex mitral anatomy will
be of enormous importance in achieving
satisfactory results, as recently outlined
by van Mieghem et al. CMR is regarded as
part of that preparation [50]. Following
aortic or mitral valve replacement with
a biological heart valve device, CMR is as
accurate as transhoracic and transesoph-
ageal echocardiography in assessing
prosthetic function, as recently shown
by our group [51, 52]. Nevertheless, it should be taken into
account when applying phase-contrast
sequences to assess valve disease that
this technique is prone to significant back-
ground error. Gatehouse et al. demon-
strated in a multi-centre, multi-vendor
study that breathhold through-plane
retrospectively ECG-gated phase contrast
acquisitions showed significant velocity
offset error, potentially causing about 5%
miscalculation of cardiac output and
up to 10% error in shunt measurement
[53]. To omit such errors, users are
couraged to measure within the iso-
center of the magnet, where the error is
less, and manufacturers are currently
working on improved technologies and
correction algorithms.

Future trends in Cardiovascular Magnetic Resonance

Today’s visions may be tomorrow’s rou-
tine. CMR is a very active field of research,
and many innovations in hardware,
software and new clinical applications
are under investigation. The following
examples are just a small selection of
current developments in CMR.

CMR at 7 Tesla
Increasing the field strength comes along
with increases in signal- and contrast-to-
noise ratio. This benefit is expected to
be translated into higher spatial and tem-
poral resolution and faster imaging tech-
niques. However, increasing the field
strength also means dramatically increas-
ing the technological challenges, e.g.
to achieve sufficient homogeneity of the
magnetic field within the scanner. There-
fore, human cardiac imaging at ultra-high
field, (currently 7T), is still experimental
and requires close cooperation between
physicists and physicians to find innova-
tive technical solutions and develop novel
software and hardware components.
Nevertheless, the first steps of CMR at 7T
have been successful. Cine imaging and
cardiac chamber quantification can be
realized in a robust and accurate mode,
and the first images with impressive
blood-tissue contrast despite very small
slice thickness offers the promise that
CMR at 7T may provide new insights into
pathophysiological processes [54-56].

BOLD at 3 Tesla
Blood oxygen level dependent (BOLD)
imaging: increased oxygen-hemo-
globin and decreased deoxyhemoglobin
tissue content result in higher T2* or
T2 values, leading to corresponding sig-
nal enhancement on T2* or T2-weighted
imaging) clearly benefits from higher field
strength. While at 1.5T widely impracti-
cal, stress BOLD imaging seems to work
at 3T with adequate quality and sufficient
diagnostic accuracy to detect relevant
coronary artery disease [57, 58]. Further-
technical developments may promote this
promising method in the future, and with
BOLD an additional tissue marker – com-
plementary to the T1 and T2-weighted
images described above – may arise.

MAGNETOM Flash · 2/2010 · www.siemens.com/magnetom-world
14 MAGNETOM Flash · 2/2010 · www.siemens.com/magnetom-world
A 69-year-old man with aortic dilatation detected by transthoracic echocardiography was sent to CMR to assess the thoracic aorta. CMR
Kramer CM, Barkhausen J, Flamm SD, Kim RJ, de Roos A, Fleck E, Higgins CB, Pohost

SCMR recommended CMR protocols and CMR Users Guide – on CD!

To aid standardization of CMR, the Society for Cardiovascular Magnetic Resonance (SCMR) released CMR exam protocol recommendations for the most frequent CMR procedures, from MR imaging of myocardial infarct and cardiomyopathies, stress MRI, coronary MRA to valvular disease, congenital heart disease and more. In a collaborative effort of Siemens Healthcare and the SCMR we were able to prepare clinically optimized exam protocols for 1.5T and 3T MAGNETOM systems with Tim in accordance to the SCMR recommendations.

The protocols for software version syngo MR B17 are available as downloadable EDX files on the attached CD. The protocols for software versions syngo MR B15 and syngo MR B13 are available for download at www.siemens.com/scrm-recommended-protocols.

Please use the appropriate protocols optimized for your particular scanner type, number of receiver channels and gradient performance. For ease of use, the protocols are organized by exam modules or common cardiac diseases and sub-organized by the patient’s cooperative abilities.

For example:
- Acute Myocardial Infarct
 - Recommended – Breathhold & Triggered Protocol
 - Free Breathing & Triggered Protocol
 - Extreme Arrhythmia – Free Breathing & Non-Triggered Protocol

The CD also contains a comprehensive CMR Users Guide (90+ pages) for the most frequent CMR indications including illustrations on how to plan the correct orientations. To enable the use in everyday routine, the chapters are closely linked to the EDX protocols provided on the CD.

Acknowledgement: We would like to thank Prof. Stefan Neubauer (University of Oxford, UK; President of SCMR), Prof. Christopher Kramer (University of Virginia, USA; Chair of the CMR Acquisition Protocol Committee at SCMR) and Gary McNeal (Advanced CMR Application Specialist, Siemens Medical Solutions USA) for their tremendous efforts and support.

Arrhythmogenic Right Ventricular Cardiomyopathy

1. Localizer Module for localization
2. LV Function Module to assess ventricular function.

This is an example of the comprehensive CMR Users Guide for the most frequent CMR indications that you will find on the CD or at www.siemens.com/scrm-recommended-protocols.
Optional Axial TSE Dark Blood T1: for selected slice levels of right ventricle, segmented dark blood tse, single breathhold, trigger on every heartbeat, capture cycle for diastolic gating.

Optional Axial TSE Dark Blood T1 Fatsat: for selected slice levels of right ventricle, segmented dark blood tse with fatsat, single breathhold, trigger on every heartbeat, capture cycle for diastolic gating.

Optional TI Scout: determine optimal TI for nulling of normal RV myocardium, prescribe as a mid ventricular short axis slice, rotate FoV to avoid wrap, single breathhold, trigger on every second heartbeat, capture cycle for optimal acquisition window.

Optional Right Ventricular Vertical Long Axis Delayed: 1 slice in 1 breathhold, phase sensitive inversion recovery turboflash technique, provides both magnitude and real images, adjust Ti for nulling of normal RV myocardium, trigger on every second heartbeat, capture cycle for diastolic gating.

Optional Right Ventricular Outflow Tract Delayed: 1 slice in 1 breathhold, phase sensitive inversion recovery turboflash technique, provides both magnitude and real images, adjust Ti for nulling of normal RV myocardium, trigger on every second heartbeat, capture cycle for diastolic gating.

Optional Axial Delayed: 12 slices in 12 breathholds, phase sensitive inversion recovery turboflash technique, provides both magnitude and real images, adjust Ti for nulling of normal RV myocardium, trigger on every second heartbeat, capture cycle for diastolic gating.
Low-Dose Contrast-Enhanced MR Angiography

Roya Saleh, M.D.; Paul Finn, M.D.; Yutaka Natsuaki, Ph.D.; Gerhard Laub, Ph.D.
1Department of Radiology, University of California at Los Angeles, CA, USA
2Siemens Healthcare, West Coast Team, MR R&D, Los Angeles, CA, USA

Introduction

Contrast-enhanced MR angiography (cMRa) has been firmly established as a very powerful diagnostic tool and is employed worldwide both for routine clinical work and for specialized applications. Gadolinium-DTPA is frequently used in cMRa for imaging the carotid, thoracic, abdominal, and peripheral circulations. With proper timing and technique, high quality MRa can be performed with sub-millimeter spatial resolution in as little as a breathhold period. In recent years, the recognition of nephrogenic systemic fibrosis (NSF) has sparked widespread concern within the clinical community and has focused attention on the safe utilization and dosage of contrast agents. Symptoms of NSF first appeared in 1997 [1], but it was not until 2006 that an association with gadolinium (Gd)-based contrast agents was made [2]. While it is still speculative how Gd-based agents can trigger NSF, impairment of renal function is known to be a universal precondition and most cases have been associated with end stage renal failure. With normal kidney function, 90% of the injected dose of extravascular contrast agent is removed via the kidneys within the first 24 hours and in patients with severe renal impairment (not on dialysis) this time can be prolonged up to 7 days to clear 80% of contrast media, depending on the degree of renal function [3]. The process of renal clearance is exponentially such that the higher the injected dose, the faster the rate of renal excretion, but the longer it takes for the blood concentration to fall below a given threshold. In renal impairment, the elimination rate constant for extravascular contrast agents falls proportionately to the degree of renal impairment. So, patients with kidney impairment will have more difficulty clearing the Gd than patients with normal kidneys. It is reasonable to suggest that decreasing the dose of Gd will decrease risk exposure in susceptible patients, and the majority of proven cases of NSF have been associated with high dose Gd administration (often repeated) [4-6]. Abujedea et al., in a recent study of 36 patients with NSF has shown and concluded that NSF develops in patients with renal impairment after exposure to Gd in a dose- and time-dependent manner [7]. Use of the minimum effective dose of Gd in renal impairment has been recommended by scientific societies and governmental agencies both in the U.S. and in Europe. At one extreme, MRa can be acquired without any contrast injection (i.e. non-contrast MRa), and numerous successful non-contrast MRa techniques have been reported (e.g. syngo NATIVE TrueFISP [8, 9], syngo NATIVE SPACE, Time-Of-Fight [10] and 3D SEPT [11-13]). However, all of the non-contrast techniques are to some extent flow-sensitive, and this limitation makes them less robust and often less practical when compared to cMRa. Additionally, the majority of non-contrast MRa techniques require longer scan times since multiple arterial and venous phases are necessary to complete the data acquisition. An alternative approach to non-contrast MRa is to use low Gd doses. By optimizing the cMRa sequences to match the contrast timing and k-space acquisition, significant reduction in the contrast dose is possible. Moreover, at 3T, dramatic dose reduction can be realized relative to conventional doses at 1.5T. Time resolved 3D MRA with syngo TWIST can be performed with less than 2 ml of Gd contrast and high spatial resolution 3D Carotid imaging can be performed reliably with 8 ml or less. In our practice, when we reduce the dose of cMRa, we do so by dilution of the native gadolinium formulation at the time of administration – sometimes by a factor of four (Table 1, 2). The reason for this is so that the timing and infusion duration of the (diluted) contrast solution is identical to what it would be for an equal volume of the native (undiluted) gadolinium formulation. The result is that the peak intravascular concentration of Gd is lower with the diluted solution, but occurs at the same time as with the original protocol. Therefore, the shape and duration of the curves are identical.

Table 1: Dilution of native Gd contrast solution for MR angiography

<table>
<thead>
<tr>
<th>Method</th>
<th>1.5 Tesla</th>
<th>3 Tesla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undiluted contrast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solution volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Added Saline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final solution conc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single station MRA</td>
<td>20 cc</td>
<td>20 cc</td>
</tr>
<tr>
<td>(Head & Neck, Chest and</td>
<td>10 cc</td>
<td>30 cc</td>
</tr>
<tr>
<td>Renals)</td>
<td>30 cc</td>
<td>50%</td>
</tr>
<tr>
<td>Multi station (Lower</td>
<td>20 cc</td>
<td>40 cc</td>
</tr>
<tr>
<td>Extremity MRA)</td>
<td>30 cc</td>
<td>33%</td>
</tr>
</tbody>
</table>

Table 2: Contrast injection scheme for MR angiography at 1.5 Tesla and 3.0 Tesla

<table>
<thead>
<tr>
<th>Method of MRA</th>
<th>Injection #</th>
<th>Solution vol. (diluted Gd)</th>
<th>Saline flush</th>
<th>Injection rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head and Neck MRA</td>
<td>1</td>
<td>6 cc</td>
<td>20 cc</td>
<td>3 cc/s</td>
</tr>
<tr>
<td>Isotropic Dynamic MRA</td>
<td>2</td>
<td>34 cc</td>
<td>20 cc</td>
<td>2 cc/s</td>
</tr>
<tr>
<td>(Sag & Cor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Static MRA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chest MRA</td>
<td>1</td>
<td>2 cc</td>
<td>20 cc</td>
<td>2 cc/s</td>
</tr>
<tr>
<td>3D Timing bolus Dynamic</td>
<td>2</td>
<td>6 cc</td>
<td>20 cc</td>
<td>3 cc/s</td>
</tr>
<tr>
<td>MRA</td>
<td>Static MRA</td>
<td>3</td>
<td>32 cc</td>
<td>2 cc/s</td>
</tr>
<tr>
<td>Renal MRA*</td>
<td>1</td>
<td>2 cc</td>
<td>20 cc</td>
<td>2 cc/s</td>
</tr>
<tr>
<td>3D Timing bolus Dynamic</td>
<td>2</td>
<td>6 cc</td>
<td>20 cc</td>
<td>3 cc/s</td>
</tr>
<tr>
<td>MRA</td>
<td>Static MRA</td>
<td>32 cc</td>
<td>20 cc</td>
<td>2 cc/s</td>
</tr>
<tr>
<td>Multi Station</td>
<td>1</td>
<td>3 cc</td>
<td>20 cc</td>
<td>1.2 cc/s</td>
</tr>
<tr>
<td>(Lower Extremity MRA)</td>
<td>2</td>
<td>3 cc</td>
<td>20 cc</td>
<td>1.2 cc/s</td>
</tr>
<tr>
<td>3D Timing bolus MRA</td>
<td>2</td>
<td>3 cc</td>
<td>20 cc</td>
<td>1.2 cc/s</td>
</tr>
<tr>
<td>(Abdomen)</td>
<td>Static MRA (Calves)</td>
<td>3</td>
<td>3 cc</td>
<td>20 cc</td>
</tr>
<tr>
<td>Static MRA (Abdomen and</td>
<td>4</td>
<td>30 cc</td>
<td>20 cc</td>
<td>1.2 cc/s</td>
</tr>
<tr>
<td>thighs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*For renal MRA at 3.0 T, solution is made of 15 cc contrast and 25 cc saline (37.5% relative Gd conc.) with iV 4x.

Methods of MRA

1. Dynamic MRA
2. Static MRA
3. 3D bolus injection
4. CE MRA
5. Non-contrast MRA

Contrast agents are safe under all conditions. For a 70 kg patient, a double dose of 0.2 mmolg of Gd-DTPA corresponds to 30 ml of the contrast formulation while a triple dose of 0.3 mmolg corresponds to approximately 45 ml. However, it is possible to produce high quality MR angiograms with a fraction of commonly employed doses [14-16]. Several imaging strategies can be implemented to perform low-dose contrast-enhanced MRA. The common goal of these strategies is to optimally match injection and k space coverage to achieve the best image quality at reduced dose. Low dose contrast-enhanced MRA can be performed at both 1.5T and 3T. The tradeoff in vascular signal when reducing the contrast dose is less noticeable at 3T. Due to the higher intrinsic signal intensity, the contrast timing and k-space acquisition are well suited for high dose cMRA. This does require gradient performance and a very short TR. Alternatively, if the acquisition time cannot be shortened, a reduced amount of contrast agent can be diluted to a greater volume to extend the duration of the bolus. There will be less blood T1-shortening related to the lower contrast concentration resulting in a reduction of signal intensities as shown in

Image quality and vessel contrast are affected by the timing of the agent passing through the region of interest. A higher dose of contrast agent causes more shortening of the blood T1 and may produce stronger vessel delineation (although the effect is not linear over all dose ranges). A high dose (double or triple dose) of contrast has been used frequently in the past, assuming that MR angiographic contrast is safe under all conditions. A high dose (double or triple dose) of contrast has been used frequently in the past, assuming that MR angiographic contrast is safe under all conditions.
A typical enhancement time dynamics for arteries and veins following injection of bolus dose. The time between the arterial and venous enhancement, referred to as arterial window, is usually a fraction of the acquisition window for the MR angiogram (shown in the diagram). Different k-space acquisition order can be used, such as 1) linear or 2) flexible centric. Depending on the phase encode order, the arterial window may cover a different region in k-space, as shown in B for linear and C for flexible centric respectively. The flexible central phase encode order generates an isotropic coverage of k-space and is well suited for low dose contrast-enhanced MRA.

For cMRA using a test bolus, a delayed measurement of the center of k-space is preferable. The order of k-space points in the centric reordering is changed such that the k-space point at $k_z = 0$ is scanned after a user-defined time called time-to-center (TTC). The delayed centric reordering starts the k-space trajectory at the edge of the center segment moving towards $k_z = 0$, then moves outwards again to acquire the complete center segment in 2 equal length paths. The trajectory then acquires the region outside of the center segment to complete the k-space dataset. The details of the delayed centric reordering are outlined in Fig. 3.

It is important to note that the TTC is independent of other geometric parameters used in the imaging protocol. For example, if the phase field-of-view (FOV) is increased from 60% to 100%, the TTC will not be changed. What happens instead is a corresponding size (area) reduction of the center segment in k-space, while the number of k-space points in the center segment stays the same, independent of the actual value for the phase FOV.

Similarly, changing other parameters (e.g., phase and slice resolution, or the number of slices) will not change the selected value for TTC. This has important practical implications; the center segment can be adjusted to the arterial window as demonstrated in Fig. 2 independent of the geometric parameters in the protocol.
Currently, various institutions perform ceMR angiography differently: using different sequences and parameters, different amounts and concentrations of contrast agent, and different injection and acquisition timing. The key to success is optimal coverage of the central k-space data during maximal contrast enhancement. We have experimented with different approaches and the following have worked well for all clinical application of ceMRA in different vascular territories (Table 3) using low dose ceMRA.

Table 3: Sample clinical applications of ceMRA

<table>
<thead>
<tr>
<th>Head and Neck</th>
<th>Chest</th>
<th>Abdominal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atherosclerosis</td>
<td>Assessment of thoracic aorta and all its branches, coarctation, aneurysm, dissection and extravasation</td>
<td>Assessment of abdominal aorta and all its branches, coarctation, aneurysm, dissection and extravasation</td>
</tr>
<tr>
<td>Aneurysm</td>
<td>Aneurysm</td>
<td>Aneurysm</td>
</tr>
<tr>
<td>AV Fistula</td>
<td>AV Fistula</td>
<td>AV Fistula</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>Pulmonary AVM</td>
<td>FMD</td>
</tr>
<tr>
<td>Pre- and Post-Surgical assessment of tumor</td>
<td>Pulmonary HTN</td>
<td>Pre- and Post-Surgical assessment of tumor</td>
</tr>
<tr>
<td></td>
<td>Pulmonary embolism</td>
<td>Vasculitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vascular graft</td>
</tr>
</tbody>
</table>

Protocols

We always perform a bolus timing study with syngo TWIST and about one ml of Gd as described in detail previously. Fig. 4 shows a head and neck ceMRA in a patient with a body weight of 65 kg. For high spatial resolution ceMRA, a dose of 8.5 ml native Gd solution (Magnevist) was diluted with 25.5 ml of normal saline to a 34 ml bolus solution and injected at 2 ml/s. The infusion duration is therefore, 15 seconds. Typically, we acquire 128 slices with near isotropic resolution (voxel size = 0.8 mm x 0.7 mm x 0.8 mm) in a scan time of 23 seconds. Using the head and neck neurovascular coil, we normally use a FOV of 450 mm x 270 mm. This extended FOV covers the aortic arch, the origins of the great vessels, the carotid arteries, and the intracranial vasculature completely in one single injection. Parallel imaging (iPAT GRAPPA = 4) is used. The best results are obtained with breath-holding, which minimizes respiratory motion in the upper thorax and aortic arch.
Renal low dose cemRA

For high spatial resolution renal cemRA at 3.0T, we typically use about 10 ml native Gd formulation, diluted with 30 ml of saline. Fig. 5 shows a renal cemRA acquired using parallel imaging with an acceleration factor of 4, therefore in this case slightly higher contrast is used. Typically, we acquire 128 slices with near isotropic resolution (voxel size = 0.9 mm x 0.8 mm x 0.9 mm, FOV is 500 mm x 300 mm) in a scan time of 21 seconds. Parallel imaging (iPAT GRAPPA = 3) is used. Patients must hold their breath during the scan to minimize motion artifact in the abdomen.

Peripheral low dose cemRA

For low dose peripheral cemRA, we typically acquire 128 slices with a voxel size of 0.9 mm x 0.8 mm x 0.9 mm in a scan time of 26 seconds. Parallel imaging (iPAT GRAPPA = 4) is used. While peripheral MRA is often performed using a single injection, the dual injection scheme is the method of choice at UCLA. The first contrast injection is used to image the calf station and a second injection for abdomen and thighs. This approach guarantees a pure arterial phase with no venous contamination in the calves, regardless of vascular transit times. Patients are positioned feet first into the magnet bore. A three-station, dual-injection protocol is used with image acquisition performed first in the calves before the pelvis and thighs. A 500 mm FOV is used for each station, covering a total length of 1350 mm along the patient axis. There is typically a 10 cm overlap between the abdominal and thigh stations and a 5 cm overlap between the thigh and calf stations. For the abdominal pelvic station, patients are requested to hold their breath to minimize motion in the lower abdomen. The amount of contrast we typically prepare and use is as shown in tables 1 and 2 for single station as well as multi-station acquisitions. In anticipation of potential asymmetry in contrast arrival in each calf, which can occur with vascular diseases, three sequential post-contrast MRA data sets are acquired routinely per calf station and two sets per thigh station. To eliminate stationary background signal, the pre-contrast images are used as masks and are subtracted from the post-contrast enhanced MRA images in the calves and thighs. Subtraction is less successful and less useful in the abdomen. Figs. 6 and 7 show clinical examples of low dose peripheral cemRA acquired at 3T.
Chest low dose MRA

Most of our chest MRA studies are performed at 1.5T as they are generally combined with cardiac functional assessment, often in patients with adult congenital heart disease. Figs. 8A–D show a chest ceMRA in a patient with pulmonary atresia and hypoplastic right lung.

Generally we perform a sagittal bolus timing study with syngo TWIST using one ml of Gd. Next we perform a coronal time resolved study using the TWIST sequence with an injection of 3 ml contrast at a rate of 3 ml/sec. For high spatial resolution ceMRA, a dose of 16 ml Gd (Magnevist) is diluted with equal amount of normal saline to create a 50% solution and injected at 2 ml/s. Images are acquired during approximately 20 seconds of breath-holding.

Pediatric body ceMRA

We perform pediatric ceMRA at both systems (1.5 and 3T) under general anesthesia. Fig. 9 is a one-day-old baby with patent ductus arteriosus scanned at 1.5 Tesla with 1.25 ml of contrast diluted with 4.75 ml of saline. Fig. 10 is an image of a two-day-old infant with infantile type coarctation, acquired at 3.0 Tesla using 1.25 cc of contrast diluted with 4.75 ml of saline. Although a very small volume of contrast was used, this is still not ‘low dose’ by adult standards. In these specific cases, the practical challenges of delivering very small volumes through an adult delivery device made it difficult to optimize the injected dose, even when diluted. This shortcoming can be addressed with dedicated, low volume pediatric delivery tubing and devices.
Image visualization
In addition to data acquisition, image processing and visualization is very important. In situations where there is limited vessel contrast and signal-to-noise ratio (SNR), the thin-MIP (thin-maximum-intensity-projection) method is advantageous as it takes MIP projections from a targeted number of thin slices to create a 10-20 mm slab. This minimizes background tissue signal and increases the vessel contrast. This has generated excellent results in different vascular areas.

Summary
Low dose cMRA can be performed successfully and routinely in clinical practice. The most dramatic dose reduction protocols are possible at 3T, where the trade-off in vascular signal with dose reduction is well tolerated. Low dose cMRA, using < 10 ml of contrast agent, instead of 30 ml or more, is made practical by diluting the native contrast formulation and leaving the infusion rate unchanged.

Acknowledgement
The authors would like to acknowledge Sergio Godinez, Francine Cobla and Glenn Nyborg for performing the clinical examinations.

References

Contact
Prof. J. Paul Finn, M.D.
The David Geffen School of Medicine at UCLA
Chief, Diagnostics
Cardiovascular Imaging Section
Director, Magnetic Resonance Research
Los Angeles, CA
pfinn@mednet.ucla.edu

How-I-do-it

Visit us at www.siemens.com/magnetom-world
Go to International Version > e-trainings & Presentations

Listen to the talks on cardiovascular MR imaging that we have captured during the 7. MAGNETOM World Summit

Jens Vogel-Clausen
Johns Hopkins University, Baltimore, MD, USA
Imaging the heart – MRI compared to US and MI, and Heart perfusion – when should I stress the heart?

Russell Bull
The Royal Bournemouth and Christchurch Hospital
Bournemouth, UK
Increasing productivity with the Cardiac Dot Engine

Jeanette Schule-Menger
Charité Berlin, Berlin, Germany
Imaging of the young heart, and MRI in case of myocarditis and cardiomyopathies

Li Kun-Cheng
Xiannu Hospital, Beijing, China
Coronary MRA at 3T

Jürgen Hennig
University Hospital Freiburg, Freiburg, Germany
Future trends in cardiac imaging

Henrik Michaely
University Medical Center Mannheim, Mannheim, Germany
Low dose and large field-of-view MR angiography

James C. Carr
Northwestern Memorial Hospital, Chicago, IL, USA
Non-contrast enhanced MR angiography – when contrast matters
Clinical Cardiovascular MRI

Case Report: Cardiac Imaging with MAGNETOM ESSENZA
Cardiac MRI of Anteroapical Infarction in Patient with Left Ventricular Aneurysm with Apical Thrombus / Tako-Tsubo like Syndrome

G. Hadjidekov; G. Tonev
MC “Pro-Vita”, Sofia, Bulgaria

Introduction
Left ventricle aneurysm is an uncommon finding on MR cardiac examinations. We describe a case of aneurysmal dilation of the left ventricle with apical thrombus formation and confirmation of this thrombus, suspected on echocardiography by cardiac magnetic resonance imaging (CMR). Perfusion and late enhancement techniques contributed to the detection of chronic anteroapical infarction.

Patient history
42-year-old man with ischemic heart disease, NYHA class II, persistent atrial fibrillation and aneurysmal dilation of the left ventricle with suspicion of thrombus underwent CMR. The patient was admitted to the hospital with cough, roaring (roaring pericardial friction rub) and orthopnoe as well as pulmonary edema. Echocardiography revealed a dilated left ventricle with hypokinesis of the anterior wall and the septum, severe apical hypokinesis and a reduced ejection fraction (EF) of 29%, consistent with the diagnosis of tako-tsubo cardiomyopathy (TTC) [1]. Additionally performed coronary angiography did not show significant coronary artery disease. The patient was then referred to CMR for further evaluation.

Sequence details
Images were acquired on our 1.5T MAGNETOM ESSENZA using the 6-element Body Matrix in combination with the integrated IsoCenter Matrix coil. The following sequence parameters have been used:

TrueFISP: TR 54.6 ms, TE 1.6 ms, matrix 256/192, FOV 340 / 276 mm, bandwidth 930 Hz/px, flip angle 80°, resolution 192 / 134.

Dynamic perfusion evaluation using gradient echo sequences: TR 167.48 ms, TE 1.21 ms, matrix 256/192, FOV 340 / 276 mm, bandwidth 651 Hz/px, flip angle 12°, resolution 160 / 120.

Late enhancement using psir-single-shot sequences: TR 936 ms, TE 3.39 ms, TI 370 ms, matrix 256 / 192, FOV 340 / 276 mm, bandwidth 140 Hz/px, flip angle 25°, resolution 256 / 179.

Imaging findings
Cardiac MRI shows a dyskinetic aneurysmal anterior and apical left ventricular wall on the TrueFISP cine images in diastolic and systolic two-chamber, three-chamber and four-chamber views, as well as the left ventricle outflow tract (Figs. 1A, B, C, D). The presence of an aneurysmal dilatation of the left ventricle and a small adjacent thrombus, measuring 11 by 9 mm in diameter, are demonstrated. There is also a small pericardial effusion. The same findings are clearly demonstrated on short-axis (SA) views (Fig. 5) from base to apex. Figures 3 and 4 present the dynamic sequences in four-chamber view (Fig. 3) and short axis and left ventricle long axis views (Fig. 4) with visualisation of the apical thrombus at the level of the anteroapical ventricular aneurysm. The post-contrast acquired inversion recovery images (Fig. 2) show transmural enhancement of the left ventricular apex and part of the anterior wall, which is indicative of a scar. On late enhancement images we observe hyperintense transmural involvement of the segments 17, 14 and partly 13. A dark low-signal-intensity mass is visible adherent to the aneurysmal enhanced and scarred myocardium. The left ventricle was dilated and measured 92 by 66 mm in end-diastole and the ejection fraction (EF) was reduced at 32%, which corresponded to the values, measured in echocardiography. The septum thickness is 18 mm.

Discussion
In the past, spoiled gradient-echo (GRE) imaging techniques with the use of flip angles less than 90° offered significantly shorter imaging time than spin echo sequences for cardiac imaging [2]. In TrueFISP sequences the higher signal-to-noise ratio (SNR) allows rapid data acquisitions with very short TR values in the range of 3–5 ms. This sequence provides a high contrast between blood and myocardium with excellent delineation of anatomic structures such as papillary muscles, endocardial trabeculation and valve leaflets, making thus suited for the evaluation of wall-motion abnormalities.
Cardiovascular MRI

Parallel imaging techniques substantially reduce imaging time and therefore are often combined with sequences with high SNR, and the synergistic effect in terms of speed of data acquisition reduces the overall examination time [5, 6]. Real-time cardiac imaging permits examination of patients with cardiac arrhythmia and incapable of breath holding without the need of cardiac- or respiratory-motion compensation [7]. Recent studies compare contrast-enhanced cine-MR sequences to pre-contrast cine-MR sequences in the assessment of left ventricular thrombus ceMRI has a higher sensitivity and specificity than transthoracic echocardiography (TTE) and transesophageal echocardiography (TEE) [9, 10, 11]. Delayed enhancement ceMRI techniques using an inversion recovery pulse to suppress signal are particularly beneficial in detecting intracavitary thrombi in addition to being an excellent technique for depicting adjacent myocardial infarction and scars. This imaging technique allows the visualization of small thrombi, which can often be invisible on TEE. In our experience, the presence of slow and turbulent flow patterns in dysfunctional wall segments and a lack of contrast between a small mural thrombus and the adjacent myocardium may obscure the visualization of small thrombi on cine-MRI, even when using the newer TrueFISP techniques [9, 11]. In clinical practice, a combination of cine-MRI using the newer TrueFISP techniques and contrast-enhanced inversion recovery MRI with a careful analysis of the regions at risk – infarct area, aneurysmal and dysfunctional wall segments of the ventricles, atrial appendages – is the best way not to miss thrombi.

4A–D Left ventricle long axis views demonstrate the aneurysmal dilatation of the left ventricle and the small apical thrombus (A, B). Perfusion sequence at short axis views (C, D).

2 Four chamber late enhancement images showing the infarcted areas.

3A–D Four-chamber views of the perfusion sequence clearly demonstrating the small apical thrombus at the level of the anteropapical ventricular aneurysm.
Assessment and Classification of Peripheral Vascular Anomalies by Time-Resolved MRA using TWIST

Ulrich Kramer1, Ulrike Ernemann2, Stephan Miller1

1 Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
2 Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Germany

Introduction
Vascular malformations (VM) can be classified into high-flow arteriovenous malformations and/or fistulas (AVM) and low-flow venous or lymphatic malformations. In general, VMs are congenital anomalies, usually caused by an arrest of normal vascular development and failure of resorption of the embryologic primitive vascular elements. VMs can present in any anatomic location, tissue or organ; the most common anatomic locations being the pelvis, extremities (flexor muscles of the forearm and the quadriceps muscle) and the intracranial circulation. Overall prevalence of VMs is estimated to be 1.5% of the general population. Multiple classifications for vascular anomalies have been established, but the classification of Mulliken and Glowacki is the most frequently used system [1, 2]. Treatment and prognosis of VMs are based on the type, subtype and architecture of the lesions. A potential difficulty of making differential diagnoses for the lesions relying only on the above system is that diagnoses may often be incorrect, resulting in turn inappropriate treatment. Precise imaging evaluation is needed for treatment of the lesions, not only to evaluate the extent of lesions but also to confirm the suspected diagnoses.

Diagnosis and standards of therapy
Magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA) are widely accepted as the most sensitive and specific imaging techniques for the evaluation of VMs. Because of the limitations of US (small field-of-view, restricted penetration, operator dependency), MRI has emerged as an extremely important modality in the assessment of these lesions. The literature recognizes that the extent of tissue involvement (muscles, nerves, bone, tendons, subcutaneous tissue and skin) can be accurately determined by MRI, the full extent often being underestimated by physical examination. As a consequence, exact categorization of a VM by MRI guides treatment toward percutaneous embolization, transcatheter embolization or a surgical approach. Since the diagnosis of a vascular lesion relies mainly on medical history and clinical examination, diagnostic imaging cannot be focused on specific structural and functional information required for treatment planning. In general, evaluation of VMs requires delineation of its components: (1) location, size, and tissue involvement, (2) origin, orientation, and course of feeding arteries, and (3) origin, size, and course of the draining veins.

Due to continuous improvements in hard- and software within the last few years, time-resolved MRI and MRA (MRA in particular) has gained acceptance as a practical alternative to digital subtraction angiography (DSA) for the diagnosis and determination of appropriate treatment of VMs [3]. Time-resolved MRA has been shown to be an accurate technique to distinguish the different types of vascular anomalies [4].

MR imaging
Patients with suspicious or known AVM were studied using a 3D time-resolved contrast-enhanced (ce)MRA which incorporates Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) and echo sharing schemes, Time Resolved Imaging with Stochastic Trajectories (TWIST). All patients were examined on a 1.5T MR system (MAGNETOM Avanto, Siemens Healthcare, Erlangen, Germany), using a multi-channel phased-array surface coil or dedicated flex extension coils. All scans consisted of T1 and fat-suppressed T2-weighted images. Axial conventional spin-echo (SE) and/or turbo spin-echo (TSE) T1-weighted and T2-weighted TSE images were obtained by using 5–10 mm section thickness, 1–2 mm intersection spacing, and variable field-of-view depending on the extremity. Post-contrast images were obtained in axial and sagittal and/or coronal plane following intravenous administration of 0.1 mmol/kg gadobutrol (Gadovist®, Bayer HealthCare, Germany).

Time-resolved MRA using TWIST
The TWIST sequence divides k-space into a central (A) and a peripheral (B) region. The central region (low frequencies) defines the contrast in the image and the peripheral region (high frequencies) accounts for the detail information in...
Clinical Cardiovascular MRI

39-year-old male patient presented with a painful pulsating mass in the left buttock soft tissue. There is an increase in local skin temperature and a thrill when the lesion is palpated. (1A) On time-resolved MRA an aneurysm of the internal iliac artery as well as a large VM involving the left upper thigh, buttock and lumbar region is found. Multiple feeding arterioles and an early spacculation of dilated outflow veins can be seen. Additional CT scan was performed in order to evaluate extent of disease and tissue involvement prior to treatment. CT images in axial (1D) and coronal (1E) orientation confirmed diagnosis demonstrating a number of prominent arteries and arterioles mainly in the left gluteus muscle and multiple huge dilated and early draining veins in the subcutaneous layer, compatible with a high-flow arteriovenous malformation.

Discussion

The T1W TSE technique has special advantages for MR imaging of VMs, because it provides information on the hemodynamics of the malformations, demonstrating the early filling of the lesion during the arterial phase of the acquisition as well as – where relevant – the feeding artery. The use of parallel imaging techniques in association with the variable rate k-space sampling allows a reduction of acquisition time, improving the temporal resolution while maintaining and even improving the spatial resolution. In our study protocol the temporal resolution was varying from 4.8 to 1.4 seconds per single frame and the spatial resolution ranged from (1.1 x 1.1 x 3.0) mm³ to (1.1 x 1.1 x 3.0) mm³. A high acceleration factor of 3 was used for parallel imaging in most applications. Thus, we have been able to obtain detailed anatomical and hemodynamic information similar not only to conventional high-spatial resolution MRA but also to that obtained with DSA, but without the risks associated with ionizing radiation exposure, iodizing contrast agents, or catheterization itself.

Clinical implication

In general, whilst differentiation between a vascular malformation and a hemangioma can often be obtained clinically, MRI will be useful in this regard in several cases. Diagnostic imaging is often required for the evaluation of deeper lesions or in the setting of an atypical history to allow differentiation from other malformations or non-malformation lesions. As a result, MRI has become the imaging modality of choice in the assessment of morphological issues of VMs, e.g. extent of the lesion, tissue involvement and flow characteristics (signal voids in high-flow lesions). At our institution, based on these initial results, time-resolved MRA will influence therapeutic decision making by defining the internal architecture of a VM and its pathological high-spatial resolution MRA but without the risks associated with ionizing radiation exposure, iodizing contrast agents, or catheterization itself.
A 25-year-old male patient presented with a vascular malformation of right upper thigh. An early vascular malformation of the right gluteus maximus involved the subcutaneous tissue. Multiple dilated vessels in T2-weighted images show hyperenhancement of dilated arteries and veins without contrast agent (native).

Conclusion

Vascular malformations are complex lesions with a variety of clinical manifestations. Time-resolved MRA combined with parallel imaging and echo sharing schemes represents a reasonable alternative to more invasive DSA for the evaluation of VMs. Therefore, time-resolved MRA can play an important role in categorizing these lesions and determining their extent in order to correctly guide treatment.

References

Contact

Ulrich Kramer, M.D.
Diagnostic and Interventional Radiology
University Hospital Tübingen
Hoppe-Seyler-Str. 3
72076 Tübingen
Germany
Ulrich.Kramer@med.uni-tuebingen.de
4D Flow MR Imaging

Alex Barker; Jelena Bock; Ramona Lorenz; Michael Markl

Department of Radiology, Medical Physics, University Hospital Freiburg, Germany

Introduction

Magnetic Resonance Imaging (MRI) techniques provide non-invasive, highly accurate anatomic depictions of the heart and vessels. The intrinsic motion sensitivity of MRI can be used to image vessels with phase contrast (PC) MR-angiography, or to quantify blood flow [1–3]. Traditionally, MR imaging of flow is accomplished using methods that resolve two spatial dimensions (2D) in individual slices [4]. Alternatively, 3D spatial encoding offers the possibility of isotropic high spatial resolution and thus the ability to measure and visualize the temporal evolution of complex flow patterns in a 3D-volume. In this context, ECG-synchronized flow-sensitive 3D MRI using 3-directional velocity encoding (also termed ‘flow-sensitive 4D MRI’, ‘4D Flow MRI’, ‘time-resolved 3D velocity mapping’ or ‘4D PC-MRI’) can be employed to detect and visualize global and local blood flow characteristics in targeted vascular regions (aorta, cranial arteries, carotid arteries, etc.) [5, 6]. The nature of such datasets (3 spatial dimensions, 3 blood flow velocity directions, and time) points towards the potential of flow-sensitive 4D MRI to provide detailed quantitative flow and vessel wall parameters with complete vascular coverage. A number of recent studies have indicated the potential of flow-sensitive 4D-MRI for the detailed visualization of complex flow patterns associated with healthy and pathologic hemodynamics [7–12].

Over the past few years, flow-sensitive 4D MR imaging has systematically improved to the point that it is possible to reliably acquire comprehensive flow information within reasonable scan times on routine clinical MR systems. However, the subsequent analysis and visualization of complex, three-directional blood flow within a 3D volume is still time consuming, and advanced data processing and 3D visualization tools are necessary.

In this article we report the first experiences with a new software prototype* for analysis of 4D Flow data, developed by Siemens Healthcare in cooperation with the Medical Physics group at the University Hospital Freiburg, Germany. After a brief overview of MR imaging and data analysis methods, we present their application for the evaluation of flow-sensitive 4D MRI in different vascular territories in the human body.

4D Flow MR Imaging

Modern phase contrast MR imaging allows for the simultaneous acquisition of 3D morphology and time-resolved blood flow velocities in 3 directions. Due to the large amount of data collected, the acquisition timing relies on an efficient synchronization with cardiac and respiratory motion. Image acquisition is therefore based on an ECG-synchronized fast gradient echo sequence with short echo and repetition times in the order of TE = 2–4 ms and TR = 5–7 ms. For thoracic and abdominal applications, additional respiration control using navigator gating is necessary to avoid breathing artifacts. A number of recent methodological improvements (parallel imaging, adaptive respiration control with increased efficiency, etc.) allow for the acquisition of flow-sensitive 4D MRI data with reasonable scan times in the order of 10–20 minutes. Ultimately, the total scan time will depend on the heart rate and efficiency of respiration control in the individual patient. Typical imaging parameters providing full spatial and temporal coverage of different cardiovascular regions of interest are summarized in Table 1.

*Works in Progress. The product is under development and is not commercially available in the U.S. and its future availability cannot be ensured.
4D Flow analysis and 3D visualization

Flow-sensitive 4D MRI obtains, for each voxel within a 3D-volume and at each measured time point of the cardiac cycle, anatomical and three-directional velocity information. The 4D nature of the data frees the operator from choosing predefined examination planes within the vascular system of interest and offers the opportunity to quantify blood flow at any desired location within the data volume.

The new 4D Flow analysis software was developed to allow for a straightforward and time-efficient analysis of flow characteristics and three-dimensional visualization of vessel geometry and blood flow patterns.

<table>
<thead>
<tr>
<th>application</th>
<th>spatial resolution</th>
<th>temporal resolution</th>
<th>navigator gating</th>
<th>velocity sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>aorta & pulmonary artery</td>
<td>2.2 mm³</td>
<td>40 ms</td>
<td>lung-liver interface</td>
<td>100–150 cm/s</td>
</tr>
<tr>
<td>carotid arteries</td>
<td>1.2 mm³</td>
<td>45 – 50 ms</td>
<td>–</td>
<td>100 cm/s</td>
</tr>
<tr>
<td>intracranial arteries</td>
<td>1 mm³</td>
<td>45 – 50 ms</td>
<td>–</td>
<td>80 cm/s</td>
</tr>
<tr>
<td>portal venous system</td>
<td>2.1 mm³</td>
<td>45 ms</td>
<td>spleen-liver interface</td>
<td>50 cm/s</td>
</tr>
<tr>
<td>iliac & femoral arteries</td>
<td>2 mm³</td>
<td>40 ms</td>
<td>–</td>
<td>80–100 cm/s</td>
</tr>
</tbody>
</table>

Table 1: Typical scan parameters for flow-sensitive 4D MRI in different vascular territories. Velocity sensitivity refers to the maximum blood flow velocity that can be measured without fold-over artifacts (velocity aliasing).

- Calculation of mean velocity-time curves in analysis planes longitudinally along vessel center line.
- Flow visualization based on time-resolved 3D pathlines originating from multiple and freely selectable emitter planes and locations (including the option to color code according to local absolute blood flow velocity or by vascular origin).
- Planar flow visualization as vector graphs or color coded overlay.
- Interactive ‘point and click’ definition of analysis planes and vessel center line calculation.

Clinic Cardiovascular MRI

A summary of representative 4D Flow data acquisition and analysis in the thoracic aorta is illustrated in figure 1. The 4D Flow prototype and its different features to display and evaluate raw data, vessel geometry, vessel center line, and velocity-time curves are shown in figure 1C. The 3D flow visualization results, using time-resolved 3D pathlines are depicted in figure 2.
3D flow pattern development in the thoracic aorta in a patient with tubular hypoplasia of the aortic arch and an aneurysm of the proximal descending aorta (yellow arrow, diameter = 4.2 cm). 3D pathlines within the segmented aortic lumen clearly illustrate increased flow along the outer aneurysm wall and formation of a pronounced flow vortex within the aneurysm. The possibility to detect flow patterns such as vortex flow or identify regions with increased velocities may help to identify regions with abnormal flow and altered shear forces acting on the vessel wall. It is known from the literature that unfavorable shear forces at the vessel wall can change endothelial function and create areas at risk for vascular remodeling. The identification of such flow patterns may thus help to identify previously not assessable markers for the progression of disease or development of secondary pathologies such as aneurysms or dissections. AAo: ascending aorta, DAo: descending aorta.

Applications

In the following examples, a number of different vascular territories are presented to illustrate the utility of the new 4D flow analysis software prototype for the comprehensive evaluation of vascular hemodynamics. Figure 3 shows results from the combined visualization of vessel geometry and 3D flow patterns clearly illustrating altered flow patterns and marked vortex flow in a thoracic aortic aneurysm. The dynamics of normal portal venous flow supplying the liver are depicted in figure 4 demonstrating the subsequent filling of the portal vein and its main branches. Figure 5 shows the hemodynamic environment in a carotid bifurcation belonging to a patient with a moderate stenosis of the internal carotid artery. Note that for all patients, the flow sensitive 4D MRI data reflects the true underlying time-resolved blood flow velocity vector field and it is therefore possible to quantify blood flow velocities as shown by the velocity-time curves along the vessel center lines in figures 1 and 5. More details for each case are provided in the legends of figures 3–5. The current 4D Flow prototype offers a new and time efficient tool to evaluate 4D flow data and has demonstrated its potential for analysis of arterial and venous hemodynamics in different vascular territories. Further improvements of this first software prototype include the implementation of correction algorithms for eddy currents and velocity aliasing as well as improved reporting and presentation functionality. In addition, supplementary refinements regarding flexible quantification of flow parameters (e.g. peak systolic velocities, regurgitant fraction) and derived parameters (e.g. wall shear stress, pressure differences) will enable a comprehensive evaluation of the structural and functional information embedded in 4D flow data. In summary, the new 4D Flow analysis prototype provides an important first step for the efficient evaluation of vascular hemodynamics – providing a foundation for the adaptation of this technique in the clinical workflow. Further software additions and testing at multiple centers will also provide the opportunity to improve clinical acceptance of flow sensitive 4D MRI, including the identification of important clinical applications and to streamline future developments.
Visualization of 3D blood flow characteristics in the carotid bifurcation in a patient with moderate (40%) stenosis of the internal carotid artery. The definition of a vessel centerline from the common (CCA) into the internal carotid artery was used to calculate blood flow velocity – time curves in analysis planes along the center line. 3D flow visualization using time-resolved pathlines revealed straight flow through the stenosis and considerably enhanced helix flow within the post-stenotic dilatation. ECA = external carotid artery.

References
5. Wosgien L, Sjoqvist L, Wranne B. Temporally 3D maximum intensity projection over time (MIPt).

Case Report: Combined Assessment of Haemodynamics and Vessel Architecture in a case of Brain AVM

Jens Fiehler, M.D.
Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany

Patient history
58-year-old male with brain arteriovenous malformation (AVM). Brain imaging was scheduled because of his newly occurring headache probably not related to the AVM.

Sequence details
All images have been acquired using a 3T MAGNETOM Trios and the 8-channel phased array head-coil. Along with other sequences, we used a 3D time-resolved echo-shared MR-angiography (TWIST) i.e. 4D-MRA. TWIST was performed using a 3D fast low-angle shot sequence with in-plane image resolution of 2.8 mm x 1.9 mm and slice resolution of 5 mm. Parallel imaging with a GRAPPA (generalized autocalibrating partially parallel acquisitions) factor of 2 applied. Contrast injection was performed by intravenous pump injection of 20 ml contrast agent (Multihance, Bracco-ALTANA, Konstanz, Germany) at 4 ml/s followed by 20 ml isotonic saline. This technique allowed acquisition of one 3D data set in 0.5 seconds. After TWIST acquisition, a 3D time-of-flight magnetic resonance angiography (TOF-MRA) was obtained with a magnetization transfer saturation pulse, TR 36 ms, TE 6 ms, flip angle 25°, 2 slabs with 32 partitions, image in-plane resolution of 0.47 mm x 0.47 mm, slice thickness 0.5 mm and a FOV 150 mm x 200 mm.

Contact
PD: Dr. Michael Markl
Department of Radiology, Medical Physics University Hospital Freiburg, Germany
Phone: +49 761 270 3822
Fax: +49 761 270 3831
michael.markl@uniklinik-freiburg.de

Jürgen Fiehler, M.D.
Imaging findings
Combination of information of haemodynamics based on the voxel-oriented analysis of the temporal intensity curve in TWIST 4D-MRA and anatomical vessel structures in high spatial resolution (TOF-MRA) required the co-registration of both datasets by the home written software tool AnToNiA (Analysis Tool for Neuro Image Data, http://www.uke.de/institute/medizinische-informatik/).

A 3D maximum intensity projection over time (MIP) was created based on the 4D-MRA dataset (Fig. 1). Thereafter, the resolution of the 3D MIPt was adapted to the 4D-MRA using a cubic resampling filter. Finally, the transformation field between the two datasets was calculated using an affine 3D-3D registration method with mutual information as similarity measure. Based on the computed transformation field all dynamic characteristics were transferred directly to the TOF-MRA image and color-coded depending on the blood inflow characteristic at the vessel surface (Fig. 2) or in section anatomy (Fig. 3). In an alternative viewing method the inflowing blood can be depicted in a sequential manner (Figure 4 A–D).

Discussion
The short acquisition time allows easy and robust application of TWIST in clinical routine patients. By using the post-processing method as described one can evaluate the complex AVM anatomy from all angles and directions together with inflow information at one time to determine the treatment strategy. The hemodynamic relation of all feeding arteries and draining veins can be assessed in total. In conventional DSA, injections into separate arteries that influence each other are needed, resulting in different series that need to be merged for interpretation. In this particular case we see a temporal AVM that is fed by middle cerebral artery and drained by multiple epicerebral drainage veins. The vein of Trolard is the last draining vein (Fig. 4D).

Another advantage of the 4D method is the possibility of view into the AVM Nidus and its intranidal hemodynamics in any required direction. The intranidal flow direction is from lateral to mesial (Fig. 3). The amount of image information is considerable. We needed some time to take advantage of this method. Today we are convinced that it delivers unique information. A TWIST is conducted in all of our AVM patients. We are in the process of further improvement.
Magnetic resonance imaging has become an integral part of patient management and clinical research in stroke. As the majority of stroke patients have an ischemic etiology, assessment of tissue perfusion with perfusion-weighted MR imaging can play a major role in diagnosis, evaluation of therapy, and clinical follow-up.

To date, the only FDA-approved pharmacological treatment for acute ischemic stroke is recombinant tissue plasminogen activator (rt-PA) [1]. However, in the US and in other countries only a few percent of the patients with acute ischemic stroke are treated by rt-PA, typically because of late arrival to medical care (e.g. they arrive later than the requisite time window of 3 or 4.5 hours) [2, 3]. Hence there remains substantial interest in developing novel stroke therapeutics that could be effective in a wider therapeutic window, or to extend the window for thrombolysis to patient populations with delayed presentation. The recent results of ECASS (European Cooperative Acute Stroke Study) demonstrate that thrombolysis can be safely applied as late as 6 hours [12]. Strikingly, a further 40% of stroke patients present to the emergency department at time greater than 6 hours but still acutely, suggesting that strategies that could extend treatment even into a small subpopulation could have a significant impact. While there is evidence that a substantial segment of acute stroke patients present later than 6 hours and less than 12, how likely is it that they may benefit from delayed thrombolysis? Accumulating data in the literature combined with our own provide tantalizing evidence that tissue that is less relevant after 6 hours as compared to before. The heterogeneity of this delayed population however, obscures the potential benefit of thrombolysis that certain subsets might experience. Indeed, ECAS2 showed that minimally selective strategies applied to patients even less than 6 hours did not result in improved neurological outcome and may have even been harmful. Extending treatment to patients in the 6 to 12 hour category would therefore require careful selection.

Which patients might benefit from delayed treatment? While there are few solid data to answer this question, there are some intriguing clues. One widely used approach to the identification of salvageable tissue is based on a popular hypothesis: regions of mismatch between diffusion-weighted imaging (DWI) lesions and perfusion-weighted imaging (PWI) lesions found on early stroke imaging, that sometimes go on to infarction, but sometimes do not, represent tissue that has an increased likelihood of salvagability.

This hypothesis is based on the idea that the brain parenchyma can undergo a period of hypoperfusion without developing permanent parenchymal injury, perhaps this is a critical period of time. The differentiation between tissue that remains viable and tissue that is compromised is sometimes subtle - the DWI is often a good sign that tissue is salvageable, but there is a gray zone in between. This hypothesis has been tested in the DEFUSE study, a prospective study of 74 patients receiving rt-PA therapy between 3 to 6 hours after symptom onset [13]. Patients with a mismatch had significantly increased odds of favorable clinical outcome if reperfusion was attained, whereas no beneficial effect with reperfusion was observed in patients without. These findings support the idea that the mismatch is a useful concept, other single-center retrospective studies based on both CT and MRI matches further support the mismatch hypothesis [14–16]. Remarkably, we have found that as many as 40% of our patients in the 6 to 12 hour time frame still have a persistent penumbra defined by DWI/PWI mismatch. Recent analyses reveal that perfusion imaging used to guide delayed IV thrombolysis is associated with increased reperfusion [17]. Interventional approaches have recently demonstrated that good neurological outcomes can be achieved even when revascularization occurs later than 8 hours [18]. Experience in the MERCI/mULTIMERCI cohort suggests that the time to reperfusion is not adversely associated with outcomes in these delayed patients and that good neurological outcomes are nearly as common early as they are late (~ 40%). Put another way, patients who were reperfused later than 7 hours from the ictus had similar rates of good outcome compared to those with earlier reperfusion [19]. Nevertheless, just over half of these patients did not experience a good outcome and may have been unnecessarily exposed to the risks of the intervention. Similarly, extending thrombolysis into such a delayed population may carry increased risk of hemorrhage. This further emphasizes the importance of characterizing and distinguishing patients who may benefit from delayed treatment from those who would not. At least two recent trials have investigated the outcome of reperfusion therapy based on PWIDWI mismatch: EPITHET [20] barely missed its prospectively defined primary endpoint, which was to demonstrate whether patients exhibiting mismatch responded better to late rt-PA therapy than those that did not; DIAS II [21] failed to demonstrate that patients selected using neuroimaging can benefit from reperfusion therapy up to 9 h. While there were methodological issues with both of these trials – particularly with perfusion imaging, which we believe needs to be improved and made less sensitive to delay artifacts – it seems likely that more than DWI/PWI will be needed. While the diffusion abnormality is almost always associated with later infarction, even this is not always the case [22]. Still, the late presence of the DWI/PWI mismatch remains intriguing. We have identified that this mismatch can be highly persistent, lasting for many hours [23], particularly in patients with proximal artery occlusions [24]. But the high variability in tissue and clinical outcome of the treatment based on the mismatch suggests at least two major areas of further research:

- methodological differences in the definition and measurement of the mismatch;
- biological factors playing a role in tissue salvagability.

While the mismatch could be a sign that there is still viable tissue even at late time points – something that PET also has suggested [25, 26] – it also could mean that PWI-based method is unreliable and is actually not useful. Some investigators have suggested that the so-called mismatch might in reality be due to technical limitations that have previously overestimated the size of the penumbra. This leads to the question: Could the persistent penumbra simply be an artifact?

Currently, the measurement of tissue perfusion is based on serial imaging of the concentration of exogenous contrast agent, such as gadolinium-DTPA or endogenous agent, such as magnetically labeled blood [27]. The most common technique is contrast-enhanced dynamic susceptibility (2T*-weighted) technique (DSC), which employs the measurable decrease of signal intensity, as it is seen on a series of rapid images obtained when a bolus of IV contrast agent passes through the brain. This signal intensity decrease can be correlated to the time-intensity curve, from which the hemo-dynamic parameters are then calculated. Cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT), are estimated by deconvolving the change in tissue concentration over the first pass of a bolus of contrast agent with an arterial input function (AIF) using standard singular value decomposition (ssVD) [28]. However, flow estimates using ssVD have shown to be sensitive to tracer arrival delay (such as might occur with carotid stenosis that caused a delay in tracer arrival but not a decrease in flow), and dispersion between the selected AIF and CBF, MTT Follow-up FLAIR
Artifactual mismatch due to deviation of CBF calculation in a 62-year-old male imaged 7 h after ischemic onset. The diffusion lesion (orange area) is similar to the 4-month follow-up FLAIR (white arrows). CBF and MTT maps (sCBF, sMTT) show a large mismatch in the local nearby region of tissue. Moreover, this method is fully automated, because the local AIFs can be selected as a part of a predefined algorithm. First results already appear promising, though full validation remains to be carried out. Patients with stroke are likely to have delay and/or dispersion, further improvements in delay and dispersion correction methods remain the aim of ongoing research [34]. We note that even with this improved blood flow calculation methodology, more metabolic information may well be needed to understand the concept of persistently penumbra and to truly identify salvageable tissue. We and other groups have already developed models that incorporated other biological variables, such as stroke location, age and stroke subtype [35–37]. These methods take multiple input parameters and allow the system to create “risk maps” that can be used to predict the likelihood of infarction of each single voxel of tissue, based on acute imaging. Other methodologies and approaches, currently being studied in our laboratory and other laboratories, include:

- brief patient exposure to oxygen, and measurement of the tissue response (by, for example, quantitative BOLD imaging);
- use of pH-weighted MR imaging, and correlating these findings with follow-up outcome;
- measuring levels of lactate in bothinfarcted tissue and penumbra (using an adiabatic high-resolution spiral CSI sequence) to determine their geographic difference and relation to the tissue viability.

Conclusions

Stroke remains a major public health problem throughout the world, and MRI has already contributed substantially to its management. Further efforts are needed to improve neuron perfusion imaging and beyond in order to optimally reduce morbidity and mortality.

References

7. Kant DM, Rothazer R, Saller HP. Are some patients likely to benefit from recombinant tissue-type plasminogen activator for acute ischemic stroke even after 3 hours from ischemic onset? Stroke. 2004;35:446-447.

8. Kant DM, Sellner HP, Rothazer R, Bihn M, Hacke W. Cardiac myocardial perfusion benefit profiling to be used to select favorably-treated patients for novel therapeutic drugs and/or different time-windows. Stroke. 2006;37;2963-2969.

Functional Prostate MR Including Dynamic Contrast-Enhanced T1-Weighted Imaging at 1.5 Tesla Without Endorectal Coil.

First Clinical Experiences with a Study Protocol at Multi-Imagem, Brazil

Leonardo Kayat Bittencourt, M.D.; Thomas Doring, MSc; Marcio Bernardes, RT; Emerson Gasparetto, M.D., Ph.D.; Romeu Corrêas Domingues, M.D.

CDPI Clínica de Diagnóstico Por Imagem, Multi-Imagem, UFRJ - Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Introduction

Reviewing the current literature on prostate MR, most authors rely on the use of 3T scanners that reveal better diagnostic and staging accuracy than the previous studies using older 1.5T and 1.0T machines in the 90’s. However, in most countries 1.5T MR scanners are still more widely available than 3T machines. Looking at new developments in coil technology this new generation of 1.5 Tesla superconducting MR scanners potentially provides an acceptable performance on the management of prostate cancer (PCA) patients. Moreover, the continuing improvement of functional sequences, namely diffusion-weighted imaging (DWI) and dynamic contrast enhancement (DCE) T1w imaging and the development of new post-processing tools (i.e., image-fusion and pharmacokinetic maps) could further contribute on the diagnostic and staging accuracy of MRI including 1.5T MR scans in prostate MR research project. The study was approved by the local Ethics and Research Committee, and all patients signed an informed consent. Thirteen consecutive patients were submitted to prostate MR examinations, prior to prostatectomy. Patients’ age ranged between 51 and 77 years (average 63 years), their PSA levels varying between 51 and 77 years (average 63 years), their PSA levels varying between 3.4 and 42.0 ng/mL (median 8.6 ng/mL). Examinations (table 1) were done on an 18-channel 1.5T scanner (MAGNETOM Avanto, Siemens Healthcare, Erlangen, Germany), with a combination of the 6-channel phased-array surface coil (Body Matrix) combined with up to 6 elements of the integrated spine coil. Prior to the examinations, the patients were given 10 mg of N-methyl-scopolamine bromide (Buscopan®, Boehringer Ingelheim, Brazil), in order to attenuate peristalsis. The study protocol consisted of high-resolution T2-weighted turbo spin echo (TSE) sequences in the axial (TR 4750 ms, TE 101 ms, no PAT, FOV (160 x 160) mm², matrix (256 x 230) px², slice thickness 3.5 mm, no gap, 3 averages, acquisition time 5:47 min), coronal (TR 3000 ms, TE 101 ms, no PAT, FOV (160 x 160) mm², matrix (256 x 230) px², slice thickness 3 mm, no gap, 3 averages, acquisition time 3:09 min), DWI (syngo REVEAL) in the axial plane (ep2d, diff, TR 3000 ms, TE 88 ms, b-values 0, 500, 1000 mm²/s, 3-scan trace, ADC map Inline, noise level set to 0, PAT factor 2 (syngo GRAPPA), FOV (200 x 200) mm², matrix (150 x 150) px², slice thickness 3.5 mm, no gap, 8 averages, acquisition time 2.57 min), thick-slice T2-weighted sequence in the axial plane covering lymph node stages from the renal veins down to the pubic bone (HASTE; TR 700 ms, TE 38 ms, PAT factor 2 (syngo GRAPPA), FOV 30 cm x 36 cm, matrix (256 x 200) px², slice thickness 3 mm, 10% gap, 2 averages, acquisition time 3.09 min). DCE (syngo REVEAL) in the axial plane covering prostate stages from T2WI to post-contrast enhancement (DCE) T1w imaging, and briefly present the preliminary results, with illustrative cases.

Materials and methods

This protocol was developed in 2009, as part of an ongoing long-term prostate MR research project. The study was approved by the local Ethics and Research Committee, and all patients signed an informed consent. Thirteen consecutive patients were submitted to prostate MR examinations, prior to prostatectomy. Patients’ age ranged between 51 and 77 years (average 63 years), their PSA levels varying between 3.4 and 42.0 ng/mL (median 8.6 ng/mL). Examinations (table 1) were done on an 18-channel 1.5T scanner (MAGNETOM Avanto, Siemens Healthcare, Erlangen, Germany), with a combination of the 6-channel phased-array surface coil (Body Matrix) combined with up to 6 elements of the integrated spine coil. Prior to the examinations, the patients were given 10 mg of N-methyl-scopolamine bromide (Buscopan®, Boehringer Ingelheim, Brazil), in order to attenuate peristalsis. The study protocol consisted of high-resolution T2-weighted turbo spin echo (TSE) sequences in the axial (TR 4750 ms, TE 101 ms, no PAT, FOV (160 x 160) mm², matrix (256 x 230) px², slice thickness 3.5 mm, no gap, 3 averages, acquisition time 5:47 min), coronal (TR 3000 ms, TE 101 ms, no PAT, FOV (160 x 160) mm², matrix (256 x 230) px², slice thickness 3 mm, no gap, 3 averages, acquisition time 3:09 min), DWI (syngo REVEAL) in the axial plane (ep2d, diff, TR 3000 ms, TE 88 ms, b-values 0, 500, 1000 mm²/s, 3-scan trace, ADC map Inline, noise level set to 0, PAT factor 2 (syngo GRAPPA), FOV (200 x 200) mm², matrix (150 x 150) px², slice thickness 3.5 mm, no gap, 8 averages, acquisition time 2.57 min), thick-slice T2-weighted sequence in the axial plane covering lymph node stages from the renal veins down to the pubic bone (HASTE; TR 700 ms, TE 38 ms, PAT factor 2 (syngo GRAPPA), FOV 30 cm x 36 cm, matrix (256 x 200) px², slice thickness 3 mm, 10% gap, 2 averages, acquisition time 3.09 min). DCE (syngo REVEAL) in the axial plane covering prostate stages from T2WI to post-contrast enhancement (DCE) T1w imaging, and briefly present the preliminary results, with illustrative cases.

Table 1

<table>
<thead>
<tr>
<th>Feature</th>
<th>Prostate MR</th>
<th>Histopathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unilateral Involvement</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Bilateral Involvement</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Extra-prostatic extension</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Seminal Vesicle extension</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Positive Lymph Nodes</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Extra-prostatic extension.

2C Extra-prostatic extension. 2A T2w image showing a nodular T2 hyperintense area on the left base (arrowheads), focally bulging the capsular contour.

3B On the ADC map, there is restricted diffusion on the same spot, but further anatomical information.

3C Early arterial phase post-gadolinium image, depicting intense and early enhancement on the suspicious area (arrowheads).

3D ADC map overlaid on T2w image, confirming good correlation with both anatomical and functional findings.

Results

Prostatectomy showed prostate adenocarcinoma in all 13 cases, with Gleason grades varying between 6 (3+3) and 9 (4+5) (median 6).

In all 13 cases the main tumor focus was correctly identified by MR imaging. The laterality of the lesion was correctly determined by MR in 12 patients (sensitivity: 90%, specificity: 100%), eleven of which were also correctly identified by MR imaging. The presence of local extra-prostatic extension and seminal vesicle involvement.

3D-FUSION® (Siemens Healthcare, Erlangen, Germany), using PET-Rainbow and Descending Red Ramp color look-up tables, respectively for the Ktrans and the ADC map.

For evaluation of findings within the study setting, one reader (LKB, 5 years of experience) and a second reader (KAB, 3 years of experience, 2 years on prostate MR) evaluated all of the examinations and imaging findings were registered on a dedicated evaluation sheet. Focused on the evaluation of capsular penetration of prostate cancer for planning of radical prostatectomy, suspected lesions were characterized by laterality (left x right x bilateral), presence of local extra-prostatic extension and seminal vesicle involvement.

Prostatectomy specimens were submitted to routine histopathological evaluation, except for four cases, submitted to whole-mount processing.

Results

Prostatectomy showed prostate adenocarcinoma in all 13 cases, with Gleason grades varying between 6 (3+3) and 9 (4+5) (median 6).

In all 13 cases the main tumor focus was correctly identified by MR imaging. The laterality of the lesion was correctly determined by MR in 12 patients (sensitivity: 90%, specificity: 100%), eleven of which were also correctly identified by MR imaging. The presence of local extra-prostatic extension and seminal vesicle involvement.

Prostatectomy specimens were submitted to routine histopathological evaluation, except for four cases, submitted to whole-mount processing.

Results

Prostatectomy showed prostate adenocarcinoma in all 13 cases, with Gleason grades varying between 6 (3+3) and 9 (4+5) (median 6).

In all 13 cases the main tumor focus was correctly identified by MR imaging. The laterality of the lesion was correctly determined by MR in 12 patients (sensitivity: 90%, specificity: 100%), eleven of which were also correctly identified by MR imaging. The presence of local extra-prostatic extension and seminal vesicle involvement.

Prostatectomy specimens were submitted to routine histopathological evaluation, except for four cases, submitted to whole-mount processing.
had bilateral tumors. There was one false negative, in a patient with bilateral involvement substantiated as unilateral tumor by MR.

Four patients had extra-prostatic tumoral extension, three of them being identified by MR imaging (sensitivity: 75%, specificity: 100%). Only one patient had seminal vesicle tumoral invasion, also seen on MR imaging.

No patient had tumor-positive pelvic lymph nodes, neither was it suspected by MR in any of them.

Discussion

Functional prostate MR imaging, including DWO, DCE, and 3D multi-voxel spectroscopy, is largely turning into the mainstay in prostate cancer detection, staging and follow-up. The results among various institutions bear good to optimal correlation with histopathology, depending on the scanner’s field strength (1.5 T, 3.0 T), the kind of coil employed (surface + endorectal), and also the theoretical spatial resolution achievable. Despite the most recent technological advances, an alternative should be pursued for MR imaging of PCa, that allows cost-effectiveness and scanner availability with acceptable diagnostic accuracy, in order to extend the benefits of the technique to the overall population, which is still being managed based on PSA and rectal exam alone. Also, the endorectal coil (ERC) is another barrier to the acceptance of prostate MR. Although being of undisputedly better performance than surface coil alone on tumor localization, patient refusal due to cultural identity is still a major issue, most notably in Latin and Asian/Arabic countries. It requires specially trained personnel for proper placement, and considerably increases table time, not to mention the deformation produced on the prostate, that compromises radiotherapy planning and follow up studies. Particularly in Brazil, there is also an economical problem, for the ERC, which is disposable and for one use only, is not reimbursed by any of the health insurance companies or the public health system. Giving those circumstances, and considering that our institutions are localized in a developing country, we initiated a long-term prospective research project aiming to create a prostate MR protocol that is feasible in most of the already worldwide installed 1 ST scanners, without the need of an endorectal coil or specifically trained personnel, with optimized table time, and bearing acceptable diagnostic accuracy for relevant staging parameters, to be applied in large population studies.

We also believe that newer post-processing tools for functional sequences, producing parametric color maps and fusions of functional and anatomic images, may further add to the diagnostic performance and to the communication of results to the referring physicians.

Preliminary results indicate a promising performance of this protocol on presurgical staging of PCs. Further patients will be included, and the upcoming results will be accordingly published.

References

Siemens Healthcare Publications

Our publications offer the latest information and background for every healthcare field. From the hospital director to the radiological assistant – here, you can quickly find information relevant to your needs.

Medical Solutions
Innovations and trends in healthcare. The magazine is designed especially for members of hospital management, administration personnel, and heads of medical departments.

AXIOM Innovations
Everything from the worlds of interventional radiology, cardiology, fluoroscopy, and radiography. This semiannual magazine is primarily designed for physicians, physicists, researchers, and medical technical personnel.

MAGNETOM Flash
Everything from the world of magnetic resonance imaging. The magazine presents case reports, technology, product news, and application tips. It is primarily designed for physicians, physicists, and medical technical personnel.

SOMATOM Sessions
Everything from the world of computed tomography. With its innovations, clinical applications, and visions, this semiannual magazine is primarily designed for physicians, physicists, researchers, and medical technical personnel.

For current and past issues and to order the magazines, please visit www.siemens.com/healthcare-magazine.

TWIST
Page 41

4D Flow MRI
Page 46

How-I-do-it
CD with SCMR Recommended Protocols
Page 20

Low-dose MRA
Page 24

eNews
Register for the global Siemens Healthcare Newsletter at www.siemens.com/healthcare-eNews to receive monthly updates on topics that interest you.
Dear MAGNETOM user,

Even before the introduction of MR imaging, the visualization of vessels was an integral part of the daily routine of a radiology department. Since MR, however – compared to conventional DSA or CTA – we can now acquire detailed information about the vessels without the need to expose the patient to radiation. And by dispensing with previously under- taken interventions we can thereby avoid their associated risks.

It’s true that radiation-free (and contrast-media free) assessment of the vessels can easily be performed with ultrasound. However, its high dependency on the experience of the performing physician, compromised diagnostic accuracy for certain regions of the body (and clinical condition e.g. after surgical intervention), and its limitations in evaluating larger areas of interest over a short timeframe do compromise its clinical relevance for many diagnostic and therapeutic methods and their limitations in evaluation larger areas of interest over a short timeframe do compromise its clinical relevance for many diagnostic and therapeutic methods and their clinical potential.

One important focus of this issue is the practical implementation of cardiac MRI. Back in 2007 we reported about the current clinical status of cardiac MRI and distributed the corresponding protocols for the Society of Cardiovascular Magnetic Resonance for your scanner. This latest issue contains an update of these protocols for the syngo MR B17 and also a selection of new clinical information which will surely influence our daily routine in cardiac imaging.

Matthias Lichy, M.D.

Over already?

Experience the new syngo™ TWIST MRA – now available at ABC Imaging Center

Co-Funding: Incorporated into the syngo MR B17 and also the syngo® B16 platform, syngo™ TWIST MRA can provide detailed temporal information.

Reliable Time: fast imaging technology within a matter of minutes.

Confidential: Detailed images for your doctor to help make a more confident diagnosis.

Low-dose MRA

Now available at ABC Imaging Center (000) 000-0000

Market your MAGNETOM system

All the tools necessary to market your facility to patients and referring physicians are waiting for you in the Your MAGNETOM system section on

www.siemens.com/magnetom-world

Here you will find everything you need from patient pamphlets to advertisements, to trailers and press releases, postcards, posters, event checklists, high-resolution images and much more – ready for immediate use.
Dear MAGNETOM user,

Even before the introduction of MR imaging, the visualization of vessels was an integral part of the daily routine of a radiology department. Since MRI, however, compared to conventional DSA or CTA – we can now acquire detailed information about the vessels without the need to expose the patient to radiation. And by dispensing with previously under-taken interventions we can thereby avoid their associated risks.

It’s true that radiation-free (and also contrast-media-free) assessment of the vessels can easily be performed with ultrasound. However, its high dependency on the experience of the performing physicians, compromised diagnostic accuracy for certain regions of the body (and clinical condition e.g. after surgical intervention), and its limitations in evaluating large areas of interest within a short timeframe do compromise its clinical usability. With the introduction of the shortest examination time and one single exam.

For most of our older patients, however, radiation exposure is only a relative threat. On the other hand, the impairment of renal function in this patient cohort and other practical issues have led to MRI using new imaging technologies to provide highest contrast and best timing of the vessel filling with the lowest dosages of contrast media. These techniques, such as echo-sharing MRA sequences (syngo TWIST) not only allow a reduction in the amount of applied contrast media but can also be used to provide detailed temporal information.

The combination of high temporal and spatial resolution without the need for a risky intervention and radiation exposure is perhaps the most appealing aspect of such an imaging technique and one of the reasons why temporal resolved MRA is nowadays playing an increasingly important role in, for example, therapy planning in cases of peripheral vessel disease, assessment of vessel malformations, detailed understanding of tumor perfusion and vessel supply. This issue of MAGNETOM Flash offers you an insight into ongoing developments in imaging aspects of vessel diseases e.g. the evaluation of Haemodynamics.

We have yet to mention the biggest advantage of MRI: its ability to provide information about the tissue itself and its functional state e.g. for evaluation of brain damage in case of stroke or heart muscle viability in case of coronary artery disease. This is beyond what any other clinically available imaging method can achieve.

One important focus of this issue is the practical implementation of cardiac MRI. Back in 2007 we reported about the current clinical status of cardiac MR and distributed the recommended protocols of the Society of Cardiovascular Magnetic Resonance for your MR scanner. This latest issue contains an update of these protocols for the syngo MR B17 and also a selection of new clinical information which will surely influence our daily routine in cardiac imaging.

... I was just getting comfortable!

MAGNETOM Flash – Issue 1 (2013) by Siemens AG, Berlin and Munich, All Rights Reserved

Layout: independent Medien-Design

Editorial

Associate Editor: Antje Hellwich

Editor-in-Chief: Dr. Matthias Lichy, M.D.

All Rights Reserved
Clinical
CMR Update
Page 6
syngo TWIST
Page 41
4D Flow MRI
Page 46
How-I-do-it
CD with SCMR
Recommended Protocols
Page 20
Low-dose MRA
Page 24
On account of certain regional limitations of sales rights and service availability, we cannot guarantee that all products included in this brochure are available through the Siemens sales organization worldwide. Availability and packaging may vary by country and is subject to change without prior notice. Some/All of the features and products described herein may not be available in the United States.

The information in this document contains general technical descriptions of specifications and options as well as standard and optional features which do not always have to be present in individual cases.

Siemens reserves the right to modify the design, packaging, specifications and options described herein without prior notice.

Please contact your local Siemens sales representative for the most current information.

Note: Any technical data contained in this document may vary within defined tolerances. Original images always lose a certain amount of detail when reproduced.