Background

In nuclear medicine, bone scanning is based on the principle of scintigraphy using bone-seeking radiopharmaceuticals. $[^{99m}Tc]$ (or $[^{99}Mo]$) -labelled polyphosphonates are used as tracers for this purpose. They accumulate in sites of increased bone formation; metastases are detected either by increased uptake of the lesion itself (osteoplastic), as reaction of the surrounding healthy bone matrix or as defect (osteolytic).

Bone scintigraphy has found its way into several clinical guidelines over the last decades and is a standard procedure in the evaluation of bone metastases. However, degenerative changes of bones are challenging to diagnose accurately especially in elderly patients. The low sensitivity of scintigraphy for (small) osteolytic lesions often requires complimentary imaging, either X-ray, computed tomography (CT) or – especially in case of bone tumors and bone marrow involvement – magnetic resonance imaging (MRI). It has to be stated that bone scintigraphy is also associated with poor spatial resolution and as a consequence of the imaging mechanism itself this method has limited diagnostic specificity for lesion characterization and an insufficient sensitivity for bone marrow diseases.

Positron emission tomography (PET) using $[^{18}F]$-fluoride has already demonstrated to be a clinically useful alternative to traditional bone scintigraphy. Interestingly, $[^{18}F]$ was initially replaced by $[^{99m}Tc]$-labelled polyphosphonates as osteotropic tracer. But with the development of modern PET/CT technology, the advantages over traditional bone scintigraphy are eminent; $[^{18}F]$ PET adds diagnostic information mainly by its superior resolution compared to scintigraphy and nowadays PET is routinely acquired as 3D data. In addition, CT used as input for attenuation correction helps to characterize suspicious bone modeling. Also it should be kept in mind that from a patient perspective, $[^{18}F]$ PET/CT is considered to be the more convenient procedure (with special focus on preparation time and scan duration). Independent of its diagnostic advantages, the importance of $[^{18}F]$ PET has increased recently because of its importance as a substitute for conventional skeletal scintigraphy in a time with limited availability of $[^{99}Mo]/[^{99m}Tc]$. To ensure healthcare, $[^{18}F]$ PET has now become part of common outpatient care [1–5]. Within the last decade, MRI has also increasingly challenged the clinical value of bone scintigraphy with superior diagnostic performance. The potential to assess not only changes of the bone but especially of the bone marrow and soft tissues constitutes a major advantage of modern imaging techniques.
tissue in general at highest sensitivity can add important information and have a clear impact on patient care. This is already proven for dedicated patient cohorts. In combination with the advent of multi-regional MRI and further advances in MR technology, diffusion-weighted imaging (DWI) is used more and more routinely to add functional information to MRI. The images derived from such an exam show PET-like appearance; however, the underlying mechanism is restriction of water motion. How DWI will add further diagnostic accuracy in the detection of bone metastases and especially therapy follow-up is still subject of debate but its potential is more than evident [6–11].

Combining [18F] PET and MRI for evaluation of bone processes is therefore appealing but was only available in a small number of very selected cases up to now. One practical reason is the associated effort for conducting, synchronizing (time and indication wise) and reading two complex exams (this is especially true for MRI, where a standard whole-body scan produces more than 1000 images which have to be read). In addition, fusion techniques, which are often used to assist in this task, are of limited value especially for scans covering a larger volume simply because of different positions of the bones between the two examinations. The limitation of two separate exams can only partially be overcome by positioning aids (with all their associated disadvantages). It can, however, be overcome by using hybrid MR/PET systems (with the advantage to perform only one scan). Much has been written about the need and the technology behind this new hybrid imaging modality (see also the most recent issues of MAGNETOM Flash). It should be pointed out that simultaneous MR and PET imaging also has advantages in clinical routine over a sequential approach – not only from a workflow aspect.

A very obvious aspect is that it clearly improves spatial registration between metabolic and morphological information by reducing the time gap between the acquisition of MR and PET. This is a clear advantage not only in imaging the pelvis, bowel, lung and liver, but also in patients with limited capability for holding still in one position over a longer time period. Also it should be mentioned that there are no limitations in the performance of the individual imaging methods of such a combined simultaneous MR/PET system. Hybrid MR/PET systems rely on segmentation algorithms for providing the input function of the attenuation correction. At this point in time, bone segmentation is available only for dedicated areas like the skull base and not yet integrated in whole-body scanning. Nevertheless, based on existing data and experience, the need for bone segmentation can be negated in a clinical setting especially when a qualitative reading of PET is performed. The need for quantification of PET is unquestioned for follow-up exams and, so far, the introduced error as compared to a standard PET/CT (which has also a certain level of confidence only) seems to be negligible even for longitudinal studies – if performed with an MR/PET system. Nevertheless, the advent of this technology has reminded us that the discussion about the accuracy of PET quantification is of high importance and far from concluded (which is also true for the comparability of results acquired with different PET/CT systems).

The diagnostic capabilities of MR and PET alone and in combination are of course dependent on the underlying pathology and the applied MR imaging methods and tracers. [12–15]

Case report

Patient history and sequence details
A 91-year-old female with severe sacral pain was referred to our institution for a bone scan with [18F] as substitute to bone scintigraphy. The patient was diagnosed in 1986 with breast cancer and in 2004 a malignoma of the uterus was treated. Application of [18F] was performed according to guidelines. MR/PET was conducted as a multi-step exam covering the whole body. During simultaneous PET acquisition, a coronal T1w TSE (512 matrix, 450 mm FOV, 5 mm SL) and T2w STIR (384 matrix, 450 FOV, 5 mm SL) was acquired. In addition, a transversal DWI was measured (b-values 50, 400, 800 s/mm², spectral fat saturation, 192 matrix, 5 mm SL; inline ADC calculation). All images shown were acquired using Biograph mMR (Siemens Healthcare, Erlangen, Germany) and a combination of the head/neck, spine and body coils.

Imaging findings

A large osteolytic lesion is shown within the sacral bone (massa lateralis). A clear mismatch between lesion size and corresponding bone formation is obvious. In addition, tumor-suspicious bone formation with corresponding lytic aspect in MRI is demonstrated for the 10th and 7th right rib. Based on DWI, these lesions are characterized by high signal on the original b-value images and restriction of water diffusion. In addition, multiple degenerative bone formations without corresponding oedema in MRI are visualized: spondylosis of the thoracic spine and coxarthrosis of the right hip are the most obvious ones. Focal uptake is also seen in the dorsal processus of the 6th and 7th cervical vertebra. Based on T2w STIR images at least for the bone formation of the 7th vertebra a corresponding hyperintense lesion with space occupying aspects at least on the coronal original orientation can be shown. Often reactive oedema can be seen also in degenerative findings, however, based on the space occupying appearance further manifestation of the bone metastases.
Sagittal MIP (2A), coronal (2B), thick-slice MIP (2C) showing pathologic bone formation within the os sacrum and the 10th and 7th right rib as well as the 7th/6th cervical vertebra (dorsal processus) (arrows). In addition, multiple degenerative bone formation can be seen (e.g. spondylosis of the thoracic spine; asterisk).

Clear mismatch between bone formation (arrows) and true extent of the metastasis (asterisk) in the massa lateralis of the os sacrum is shown. Coronal multiplanar reconstruction (MPR) of the [18F] PET (3A), overlay of metabolic information on MRI (3B), corresponding coronal T1w TIRM (3C).
Thick-slice MPR based on the \(b = 800 \text{ s/mm}^2 \) DWI images. By suppression of the background the tumor tissue is well delineated. ADC mapping (not shown) did proof restriction of water diffusion. Coronal (4A) and transversal (4B) reformation.
must be concluded. No evidence for further metastases within the long bones of the upper and lower (not shown) extremities, no fractures or soft tissue involvement, no spinal cord compression. The used protocol was mainly focused on the skeletal system, however, further tumor manifestations outside the bone (including lymph nodes) can be ruled out with sufficient diagnostic accuracy.

Diagnosis
Multifocal metastatic disease of the skeletal system has to be concluded. Based on imaging findings and patient history, a late metastatic manifestation of the mamma carcinoma seems to be the most plausible explanation. With increased numbers of successful treatment of the primary tumor and also in concordance with latest epidemiological data, tumor recurrence of mamma carcinoma after the 5-years follow-up interval has to be taken into account. However, a third tumor manifestation cannot be ruled out based only on imaging findings and missing presence of a potential primary tumor. Therefore the final conclusion of this exam has to be bone metastases of a cancer of unknown primary (CUP). Because of clinical presentation (severe pain), a therapy relevance is obvious but further diagnosis and therapy will be to be discussed in detail and based on a very individual decision as a consequence of the patients age and general condition.

Conclusion
Combining [18F] PET and MRI in one simultaneous exam is appropriate when it comes to providing best patient care. Based on the knowledge with PET and MRI alone, it is more than justified in our opinion to state that this imaging method can be applied to a large cohort of patients. While the presented case may be a not so common clinical scenario for the future application of MR/PET, it clearly demonstrates the potential of this method as the most accurate method for evaluation of osseous and bone marrow processes. Especially in cases with suspicion of bone marrow involvement and for younger patients, simultaneous MR/PET will play an important role in the future. How far
this method will be added to, or will even replace, conventional imaging will of course be also a question of upcoming therapy options and tracers e.g. for evaluation of hormone receptor status. But certainly the presented combination of \([18F]\) PET and MRI is already a further step towards a more accurate and patient-specific diagnoses and therapy selection – and all within one exam.

References

Contact
Markus G. Lentschig, M.D.
ZEMODI
Zentrum für Moderne Diagnostik
Schwachhauser Heerstr. 63a
28211 Bremen
Germany
Phone +49 421 69641-600
Fax +49 421 69641-649
www.zemodi.de