MRI in Head and Neck Radiotherapy Planning

Houda Bahig, M.D.; Karim Boudam, Ph.D.; David Landry, M.D.; Edith Filion, M.D.; Olivier Ballivy, M.D.; David Roberge, M.D.; Jean-Charles Côté, Ph.D.; Phuc-Félix Nguyen-Tan, M.D.

1 Department of Radiation Oncology, Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada
2 Department of Radiology, Centre Hospitalier de l’Université de Montréal, Montreal, Quebec, Canada

The introduction of intensity modulated radiotherapy (IMRT) as standard of care as well as the sustained improvements in image-guidance have significantly increased the precision and complexity of head and neck cancer (HNC) radiotherapy (RT) planning. As have many other institutions, the Centre Hospitalier de l’Université de Montréal (CHUM), a high-volume center for head and neck oncology, has adopted a multi-modality imaging approach for RT planning in locally advanced HNC. This approach includes routine acquisition of fluorodeoxyglucose-positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) using RT-dedicated technologies, combined with contrast-enhanced planning computed tomography (CT). While the use of IMRT allows for improved conformity of dose distribution, it requires accurate tumor volume definition in order to prevent target-miss or unnecessary dose to organs at risk. In this report, we describe CHUM’s planning MRI workflow for locally advanced HNC and we discuss the current role of MRI in HNC planning.

MRI in head and neck cancer – planning workflow at CHUM

The current approach at CHUM involves the systematic acquisition of a planning CT for dose calculation, as well as MRI sequences in treatment position for improvement of soft-tissue delineation and optimal registration with planning CT for HNC cases. This is of particular importance in HNC where differences in imaging planes and neck flexion

Figure 1: T2-weighted MRI allows to detect a base of tongue lesion that is occult on CT scan.

This patient presented with a right T1N2b squamous cell cancer of the base of tongue. (1A) Planning contrast-enhanced CT scan shows a large level IIA necrotic lymph node but fails to detect primary tumor; (1B, C) axial T2-weighted MRI sequence shows a suspicious hyper-intensity at the right base of tongue measuring 1.6 x 1.3 cm and corresponding to the known primary tumor detected on fiberoptic nasopharyngoscopy.
between planning and diagnostic imaging can be major. MRI planning examinations are obtained on a RT-dedicated 70 cm open bore 1.5 Tesla system (MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany). The images are acquired in treatment position with a head and neck thermoplastic mask fixed to a custom hard foam flat table insert. Due to the incompatibility between the head and neck mask and the standard head coil, surface radiofrequency coils are used [1]; this typically involves a spine array coil posteriorly and a large 18-channel flexible array coil anteriorly (Siemens Healthcare, Erlangen, Germany).

Our institutional planning MRI protocols have been adapted to RT planning through optimization of resolution and geometric distortions, resulting in scanning parameters that differ from those used in diagnostic radiology. All sequences were corrected for geometric distortion using the built in 3D correction algorithm. Parameters of the sequences currently used in our standard workflow are as follows:

1. **Transverse T2-weighted Turbo Spin Echo (TSE) sequence:** Repetition time (TR) / echo time (TE) 5610/80 ms, field-of-view (FOV) 19 cm, voxel resolution 0.6 mm x 0.6 mm x 3.0 mm, matrix 224 x 320 and bandwidth 191 Hz/pixel. In patients presenting dental restorations, a modified metallic artifact protocol is used, with the following parameters: TR/TE 5000/91 ms, FOV 20 cm, voxel resolution 0.6 x 0.6 x 2.0 mm, matrix 320 x 320 and bandwidth 488 Hz/pixel.

2. **Transverse T1-weighted TSE sequence:** TR/TE 689/23 ms, FOV 19 cm, voxel resolution 0.6 x 0.6 x 3.0 mm, matrix 224 x 320, bandwidth 200 Hz/pixel. Parameters of the modified metallic artifact protocol: TR/TE 626/9 ms, FOV 20 cm, voxel resolution 0.6 x 0.6 x 2.0 mm, matrix 320 x 320, and bandwidth 504 Hz/pixel.

3. **Transverse post-gadolinium T1-weighted fat saturated TSE sequence:** TR/TE 739/23 ms, FOV 19 cm, voxel resolution 0.6 x 0.6 x 3.0 mm, matrix 224 x 320, bandwidth 200 Hz/pixel. Parameters of the modified metallic artifact protocol: TR/TE 654/9 ms, FOV 20 cm, voxel resolution 0.6 x 0.6 x 2.0 mm, matrix 320 x 320 and bandwidth 504 Hz/pixel.

In addition to anatomic sequences, a focused diffusion-weighted sequence targeting gross tumor volume (GTV) is also routinely obtained before gadolinium injection, using a transverse short tau inversion recovery-echo planar imaging (STIR EPI) sequence with the following parameters: TR/TE 6900/81 ms, FOV 26 cm, voxel resolution 2.0 x 2.0 x 5.0 mm, matrix 119 x 128, bandwidth 1302 Hz/pixel. Three b-values are applied: 0, 500, 1000 s/mm², with diffusion gradient encoding in 3 orthogonal directions and combined into a trace image.

After their acquisition, MRI sequences are co-registered with the planning CT. Primary and nodal GTV delineation is performed using multimodality information from contrast and non-contrast CT, MRI as well as FDG-PET. Our institutional protocol involves systematic formal interpretation of MRI imaging of all patients by an expert head and neck radiologist.

Advantages of MRI in HNC planning

MRI is now routinely integrated in the HNC RT planning workflow [2, 3]. While planning CT provides the geometric integrity and relative electron density crucial for dose calculation, MRI co-registration to the planning CT has become indispensable for precise contouring in HNC owing to the improved soft tissue contrast. The use of an RT dedicated MRI has the advantage of increasing accessibility and allowing optimal scheduling within radiation oncology, without encroaching on diagnostic time slots. In addition, our 70 cm open bore RT MRI allows for acquisition of images in treatment position with immobilisation devices in place. For optimal RT planning imaging, major particularities of an RT dedicated MRI system include use of: (a) adapted planning MRI acquisition protocols, (b) compatible immobilisation devices, (c) flat table tops, and (d) surface coils rather than standard MRI head coils [4–6]. In addition, when looking forward to MR-only planning, in-room mobile lasers may be required. Use of planning MRI in HNC was shown to increase the precision of CT-to-MR registration compared to use of diagnostic MRI [7, 8]. In a study including 22 patients with oropharyngeal cancer, Hanvey et al. showed that MRI in treatment position was associated with a reduction of mean geometric error from 7 mm to 2 mm which translated in significant improvement of dose distribution [8]; data on the clinical impact of this improvement is still needed.

The excellent soft-tissue contrast of MRI is of particular importance in HNC where discrimination between tumor and surrounding healthy tissues is as challenging as it is crucial to avoid unnecessary dose to organs at risk. MRI has been associated with increased accuracy of GTV definition in oral cavity, oropharynx, and nasopharynx [9, 10]. In addition, MRI multi-planar imaging helps cranio-caudal tumor delimitation [11–14]. Importantly, use of morphological MRI in RT planning has been associated with reduced inter-observer variability for both GTV and organs at risk contouring [7, 12, 15]. In a prospective study of 10 patients with oropharynx cancer using multimodality assessment based on MRI, FDG-PET, and CT – MRI had the lowest inter-observer variability [16]; this is critical as delineation variability was shown to have a large impact on dose to both tumor and organs at risk [17]. International head and neck consensus guidelines, published in 2015, strongly recommend the use of MRI for RT planning for oral cavity, oropharynx, and nasopharynx tumors, as well as for delineation of several organs at risk (brainstem, spinal cord, pituitary gland, lacrimal glands, optic structures, parotid glands, and pharyngeal constrictor muscles) [18]. Precise MRI-based delineation of organs at risk is particularly useful when the GTV is in the vicinity of critical structures. Figure 1 shows an example of a patient with stage T1N2b squamous cell carcinoma of the base of tongue who
This patient presented with a left T4aN2c squamous cell cancer of the base of tongue. The planning contrast-enhanced CT scan shows a large base of tongue mass; axial contrast-injected T1-weighted MRI sequence shows a large 5.4 cm base of tongue lesion with anterior extension to the extrinsic muscles of the tongue. As can be observed, the limits of the tumor are better defined on MRI.

Figure 2: MRI improving delineation of a base of tongue tumor.

This patient presented with a T2N2c squamous cell cancer of the oropharynx. While bilateral retropharyngeal lymph nodes are suspected on contrast-injected CT scan (3A), gadolinium-enhanced T1-weighted MRI allows better visualisation and delineation of bilateral retropharyngeal lymph nodes (3B, C). Anatomical MRI may however offer an advantage in the particular context of retropharyngeal lymph nodes. In a study comparing the diagnostic accuracy of CT versus MRI for detection of metastatic retropharyngeal lymph nodes in 38 patients with nasopharynx or oropharynx cancers, the two modalities were found to have similar specificity but...
MRI had a superior sensitivity [21]. Figure 3 shows the example of a patient presenting with a T2N2c squamous cell cancer of the oropharynx with bilateral retropharyngeal lymphadenopathies, better observed on gadolinium-enhanced T1-weighted MRI sequence.

The advantage of MRI in HNC RT planning is perhaps most eloquent in the context of base of skull tumors, where the use of MRI has been associated with not only decreased inter-observer variation [22], but also increased identification of intracranial and perineural spreads which are poorly visualized on CT scan [22–24]. In a study by Chung et al. [9] involving 258 patients with nasopharyngeal carcinoma, MRI had significantly higher detection rate of intracranial and pterygo-palatine fossa infiltrations compared to CT, which translated into both improved tumor delineation and staging. In addition, although bone cortex erosion is often better appreciated on CT, MRI may be superior for detection of skull base invasion [25]. Figure 4 shows post-operative planning CT and gadolinium-enhanced T1-weighted MRI from a patient with a partially resected nasopharyngeal adenoid cystic cancer. The images illustrate improved tumor delineation, as well as base of skull and perineural extensions.

Lastly, use of MRI is particularly beneficial in patients presenting dental artifacts. Dental artifacts are a common problem in HNC RT planning, given that poor dentition shares risk factors with HNC. High attenuation metal objects such as dental restorations, surgical plates or pins can cause significant scatter artifacts and, as a consequence, can severely impair CT-based oral cavity or oropharynx primary tumor delineation [26]. Variations in magnetic field strength at the interface between dental material and soft tissues can also cause artifacts, but image quality is affected to a lesser extent [27]. Figure 5 shows planning CT and gadolinium-enhanced T1-weighted MRI (modified metal artifact protocol) from a patient with a T4N0 squamous cell cancer of the oropharynx. While the primary lesion is poorly visualized on planning CT, MRI shows a well-defined right oropharynx lesion measuring 4.4 cm with extension to the medial pterygoid muscle, buccal space, soft palate, and uvula.

In conclusion, the use of MRI has become an essential part of HNC RT planning owing to the increased accuracy of co-registration with planning CT and improved tumor and organs at risk delineation, particularly for oral cavity, oropharynx, and skull base sites. However, planning MRI

1 The MRI restrictions (if any) of the metal implant must be considered prior to patient undergoing MRI exam. MR imaging of patients with metallic implants brings specific risks. However, certain implants are approved by the governing regulatory bodies to be MR conditionally safe. For such implants, the previously mentioned warning may not be applicable. Please contact the implant manufacturer for the specific conditional information. The conditions for MR safety are the responsibility of the implant manufacturer, not of Siemens Healthcare.
This patient presented with a right T4N0 squamous cell cancer of the oropharynx that can hardly be seen on planning CT due to important dental artifacts (5A); on T1-weighted MRI, a well delineated 4.4 cm oropharynx lesion, invading the right median pterygoid muscle, joining the right buccal space and extending to the soft palate and uvula is demonstrated (5C, D).

Figure 5: MRI improves oropharyngeal tumor delineation in a patient with important artifacts secondary to dental amalgams.

remains associated with several challenges including the management of geometric distortions, the need for MRI compatible immobilisation devices that maintain image-quality, the prolonged time of acquisition, and the increased use of resources. In addition, there remains uncertainty as to which imaging modality is closest to ground-truth. Considering the low concordance between CT-, FDG-PET-, and MRI-based delineations [22], MRI currently remains a complementary imaging modality to be used in combination with FDG-PET and physical examination for safe target volume delineation. Synthetic CT solutions, deriving relative electronic density data from MRI imaging, are currently being evaluated at the CHUM and, in the upcoming years, will likely lead to a more widespread adoption of MR-based workflow in HNC [28–31]. In addition, the potential value of functional MRI in HNC radiotherapy for predicting tumor response and spatiotemporal mapping of radioresistant tumor areas is currently under investigation [25, 32–35]. With the emergence of more robust data on functional imaging biomarkers, diffusion-weighted and dynamic contrast-enhanced MRI may become crucial tools to the promising avenues of dose painting and adaptive radiotherapy.

References
11 Emami B, Sethi A, Petruzzelli GJ. Influence of MRI on target volume delineation and IMRT planning in nasopharyngeal carcinoma.

