Editorial Comment
Jeanette Schülz-Menger
Page 2

Image Quality Improvement and Examination Time Shortening after MAGNETOM Avanto® Upgrade
Enrico Armando
Page 8

Compressed Sensing
Christoph Forman
Page 10

¹⁸F-FDG PET/MR in the Diagnostic Work-up of Myocardial Disease
Zahi A. Fayad
Page 40

PSIR with Respiratory Motion Corrected Averaging
Peter Kellman
Page 42

Differential Diagnosis of Claudication
Benjamin Henninger
Page 51
Jeanette Schulz-Menger is from Berlin, Germany. She is married and has a 22-year-old son, who is studying medicine. She is a cardiologist by training and active in CMR since 1996. In 2008 the Charité University Medicine Berlin created a chair in Cardiovascular Imaging housed in Cardiology, based on a close collaboration with the HELIOS-Clinics, Germany, and appointed Professor Jeanette Schulz-Menger to this chair. She heads a group focusing on clinically oriented CMR-research that has been able to establish new structures including a CMR-driven research setting working in close collaboration with the Max-Delbrueck-Center (MDC). The main interest has remained the CMR-driven understanding of myocardial injury and its relation to the cardiovascular system. They have established new structures including the extension of CMR-research from 1.5 Tesla (dedicated cardiac system) to 3T to 7T. Over recent years a new post-processing lab (CMR reading and development) has been installed, allowing to speed up processes. In 2011 an academic outpatient department of cardiology was founded under Professor Schulz-Menger’s leadership, allowing a personalized phenotyping and the

Cardiovascular Magnetic Resonance – a routine tool for clinical decision-making and an exciting research instrument.
The non-invasive chance to improve the understanding of cardiology

Dear colleagues,

Writing an editorial without repeating the ideas of the authors is always a challenge, and an editorial is always, of course, a personal view. It has become a welcome tradition that MAGNETOM Flash has a special SCMR edition. That means we are lucky ones, as we are always the first publication of the new year – an exciting start.

Although CMR itself has a longer history, SCMR celebrates its 20th anniversary in 2017.

This issue of MAGNETOM Flash nicely reflects the different aspects we wish to see covered by CMR. I had already used one of the last SCMR-Newsletters to share with you the thought that we as the Board of Trustees of SCMR developed during our last strategic meeting: That it is our responsibility to convince patients and referring doctors that CMR not only has a place in guidelines, but is suitable in the clinical environment. Utilizing CMR instead of other non-invasive imaging techniques means that one will get more definitive, relevant, and actionable answers because a CMR exam provides comprehensive information and has superior diagnostic and prognostic power, without the need for radiation. Furthermore, there are CMR-only capabilities including virtual heart biopsy, high-resolution perfusion imaging, and advanced blood flow analysis.

This MAGNETOM Flash issue provides aspects from sequence development to clinical application as well as tips and tricks helping to meet the overarching aim.

The authors share exciting news, as well as cookbook-like approaches to improve image quality. This aspect has a high priority, as it will help technologists not only to meet the needs of high-quality CMR, but also to enhance the understanding that CMR is doable today on a routine basis. As evidence of this, CMR is today mentioned in more than 29 guidelines of the European Society of Cardiology [1]. We have well-accepted and standardized SCMR protocols [2] and advices for post-processing [3]. But the aim to make the method easier and more time-efficient is also reflected in technical developments and has already allowed us a short time later e.g. to publish a consensus statement with a proposal for a 20-minute stress perfusion [4].
In the following I will aim to reflect on the articles in this issue of MAGNETOM Flash in the light of these thoughts. Fast free-breathing techniques assist considerably in the goal towards a reliable and efficient exam, easy for patients. Peter Kellman and co-workers are introducing a free-breathing Late Enhancement Imaging technique. The Phase Sensitive Inversion Recovery (PSIR) with Respiratory Motion Corrected (MOCO) averaging allows high-resolution free-breathing imaging. The technique gives not only the chance to increase diagnostic accuracy, but also to broaden the application of CMR to a vulnerable population. The images nicely demonstrate the high quality that is achievable.

Whilst the constant focus of attention is the patient, the ease of handling may also be an obstacle for technologists. That is often the case, for example, if CMR is not the only application at a dedicated scanner. However, it should be the norm, that all indications are covered, from knee, to brain, to heart.

Armando et al. report on their experience with an upgrade from MAGNETOM Avanto to Avanto fit. The Italian group shares the experience of the improved ease of use and the resulting effectiveness. They have been able to reach a reduction of acquisition times of about 40%. Interestingly, that was also translated in a use of more challenging techniques. They state that they are now able to perform the complete Lake Louise protocol [5] for assessment of acute myocarditis including early enhancement increasing the number of positive findings. As the assessment of inflammatory diseases and cardiomyopathies reflect a unique capability of CMR, this has an implication for clinical decision-making. Our own experiences with the need for fast and efficient scanning are illustrated by some case-examples. In our own environment the referring doctors don’t pay particular attention to arrhythmias or other limiting factors like patient’s conditions e.g. the capability to hold their breath or the case of deafness. We try to scan all patients and in nearly all of them we are able to provide a diagnosis and therapeutic guidance. But that means that techniques like real-time cine or motion-corrected perfusion are crucial. The latter is already a routine tool leading to free-breathing stress perfusion in all patients. That is convenient for patients and also for medical staff, as the sequence can be started immediately when reaching the adenosine effect and furthermore, the slice position is much more predictable.

Ease of use and reproducibility of a scan were also the reason for Jonathan Richer to summarize in a cookbook like approach the imaging of the coronaries themselves. However, CMR would not be CMR if we did not have scientists crossing the borders of our known and familiar world. Those thoughts are often the driving forces for further developments. But no doubt, new possibilities, new awareness can be initiated from both sides: the clinical and the scientific. It is a pleasure to recognize that the basic idea of our joint ISMRM/SCMR workshop is also present in several articles. The exchange of existing knowledge and beyond is the basis for a network in medicine as introduced by Chan and Loscalzo in 2012. They referred to the interaction of basic research and clinical research[6].

Christoph Forman and co-workers introduce in their article the potential of Compressed Sensing for CMR. They explain the current stage and its potential in detail. Compressed Sensing will allow rapid CMR imaging based on a dedicated data acquisition and image reconstruction. The acceleration can be translated into a reduction of the acquisition time or into spatial and/or temporal resolution. Compressed Sensing in a clinical setting would allow an improved real-time imaging reducing the need for breath-holding. This new feature of the Siemens Healthineers-Team will be integrated in the scanner environment, allowing a further introduction of applications.

1 WIP: the product is currently under development and is not for sale in the US and in other countries. Its future availability cannot be ensured.
2 510(k) pending. Compressed Sensing Cardiac Cine is not commercially available. Future availability cannot be guaranteed.
While Compressed Sensing sounds like a future tool in CMR, one can already appreciate first examples especially in vessel imaging. Yamamoto et al. demonstrate a Compressed Sensing based Time-of-Flight MR Angiography\(^1\). The technique has been used for visualization of cerebral arteries and was able to reduce the scan time while minimizing loss of image quality at high acceleration rates. It is impressive to see these first experiences in clinical setting using highly accelerated CS-TOF. Compressed Sensing seems also to allow the imaging of medium-to-small sized pulmonary vasculature. Wintersperger et al. describe their promising experience with iterative TWIST\(^1\) as a dynamic angiography. If IT-TWIST were really to allow “a straightforward inject-and-shoot CE-MRA protocol without the need for any bolus timing”\(^2\) as stated by the authors, it would again help us to simplify CMR.

First clinical experience is also demonstrated using exercise CMR as described by group from Australia. Strugnell et al. have used a prototype of a Compressed Sensing\(^2\) bSSFP sequence exercise ergo-metry in healthy volunteers as well as in patients. They conclude that in this pilot test the application of this highly accelerated imaging sequence has allowed the assessment of biventricular response during exercise with a reliability that was not previously possible. Both groups agree that further trials are needed to confirm these results. Nevertheless, this could be the start of a new era.

Improvement of assessment of ischemia is an ongoing research field, despite its accepted value in clinical routine. Juliano L. Fernandes et al. have successfully applied parametric mapping for assessment of myocardial ischemia. T2\(^*\) mapping is already known to be suitable for assessment of myocardial perfusion abnormalities. However, they applied T1 and T2 mapping sequences during stress, potentially reflecting changes in the myocardial intravascular components. The authors indicate that the application of native T1 mapping could reduce the need for gadolinium-based contrast agents, as T1 mapping allows the detection of different pathologies. At the current stage it should be one part of a protocol in most of the indications.

CMR allows the assessment of the heart itself, but at least as important is the capability to assess the cardiovascular system. The interaction between myocardial, structural and vascular diseases is one of the true challenges in clinical decision making. The assessment of the vessels themselves has a long history in MRI, where 4D Flow experienced an increasing recognition in recent years. Michael Markl and co-workers provide a comprehensive update on 4D Flow MRI. 4D Flow opens the door to a noninvasive assessment on hemodynamics and its impact on prognosis. An increasing number of groups are currently working in this field, so one could assume that in the near future multi-center trials will help to identify the value of 4D for clinical decision making in different fields. In congenital heart disease this value is already demonstrated.

A next step could be high-quality 4D magnitude images to overcome the need for an additional angiography. But on the other hand, it is an advantage that high-quality MR-angiographies are part of a clinical routine. It is generally accepted that, depending on anatomy and pathology, MRAs can be challenging.

Botelho et al. from Chicago provide protocols for the imaging of calcified vasculature using PETRA and FREEZEit StarVIBE. These protocols allow use at different field strengths. The imaging of calcified vessels will experience growing impact due to the increasing number of complex interventions in the ageing society.

The assessment of atherosclerosis in all vessel territories is a clinical need. But more relevant than the visualization itself is the plaque characterization and/or the impact on perfusion. There is an ongoing effort to identify the vulnerable plaque. It seems that application of MR/PET using new tracers will help to cut the Gordian knot.

\(^1\) WIP, the product is currently under development and is not for sale in the US and in other countries. Its future availability cannot be ensured.

\(^2\) 510(k) pending. Compressed Sensing Cardiac Cine is not commercially available.

Future availability cannot be guaranteed.
Colleagues from New York and Edinburgh present a case using 18F-NaF applying coronary MR/PET. They have been able to detect disease activity in the coronaries. Using MR/PET instead of PET/CT would again allow a reduction in radiation dose. MR/PET in CMR is currently mainly recognized as a research tool. But the group from Mount Sinai demonstrated a case with an active cardiac sarcoidosis. The combination 18F-FDG PET and MR may help to indicate disease activity and this could have a clinical impact soon.

This MAGNETOM Flash gives us a flavor of the multiple features of CMR. CMR is here, and today it can be applied quickly and efficiently in clinical routine. I will conclude with the words of German writer Bertolt Brecht. In one of his “Stories of Mr. Keuner” he describes how a man who had not seen the protagonist Mr. K for a long time greeted him with the words: “You haven’t changed at all”. “Oh!” replied Mr. K, and turned pale.

In my view, this says a lot about our work and life. It is no compliment to be told you haven’t changed. Change is desirable and necessary. It is this constant drive for change that is the motor for all scientific progress.

Jeanette Schulz-Menger, M.D.

References

Editorial Board
We appreciate your comments.
Please contact us at magnetomworld.med@siemens.com

Antje Hellwich
Editor-in-chief
Reto Merges
Head of Scientific Marketing
Sunil Kumar S.L., Ph.D.
Senior Manager Applications, Canada
Wellesley Were
MR Business Development Manager Australia and New Zealand
Gary R. McNeal, MS (BME)
Advanced Application Specialist, Cardiovascular MR Imaging Hoffman Estates, IL, USA

Review Board
Christoph Forman
Cardiovascular Application Development
Edgar Müller
Head of Innovation and Technology Management
Efren Ojeda
MR Marketing Application Center
Michaela Schmidt
Cardiovascular Application Development
Christian Schuster, Ph.D.
Product Manager Cardiovascular
Susanne von Vietinghoff
Global Segment Manager Cardiovascular MR
Editorial Comment

2 CMR – a routine tool for clinical decision-making and an exciting research instrument – The non-invasive chance to improve the understanding of cardiology
Jeanette Schulz-Menger, University Medicine Berlin, Charité Campus Buch, HELIOS Clinics Berlin Buch, Germany

Business

8 Cardiac MRI: Image Quality Improvement and Examination Time Shortening After MAGNETOM Avanto® Upgrade
Enrico Armando, et al., Ospedale Cardinal Massaia, Asti, Italy

Technology

10 Compressed Sensing²: a Paradigm Shift in MRI
Christoph Forman, et al., Siemens Healthineers, Erlangen, Germany

Cardiology

16 Exercise Cardiac MRI, a Clinical Reality with Compressed Sensing¹
Wendy Strugnell, et al., The Prince Charles Hospital, Brisbane, Australia

21 Cardiovascular Magnetic Resonance – an Effective Approach in Cardiology also Suitable for Very Sick Patients. Case Examples
Jeanette Schulz-Menger, et al., University Medicine Berlin, Charité Campus Buch, HELIOS Clinics Berlin Buch, Germany

27 Stress-Mapping for the Assessment of Myocardial Ischemia: New Potential Clinical Applications of Parametric Mapping
Juliano L. Fernandes, et al., Radiologia Clínica de Campinas, Campinas, Brazil

34 Combined ¹⁸F-FDG PET/MR for Enhanced Imaging of Active Cardiac Sarcoidosis
Zahi A. Fayad, et al., Mount Sinai, New York, NY, USA

40 Combined ¹³¹I PET/MR in the Diagnostic Work-up of Myocardial Disease
Zahi A. Fayad, et al., Mount Sinai, New York, NY, USA
Cardiovascular Imaging

42 Free-breathing Late Enhancement Imaging: Phase Sensitive Inversion Recovery (PSIR) with Respiratory Motion Corrected (MOCO) Averaging
Peter Kellman, et al., National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA

51 Differential Diagnosis of Claudication: Cystic Adventitial Degeneration of the Popliteal Artery – Diagnosis by a Combination of MR Angiography and Anatomical Sequences
Benjamin Henninger, Medical University of Innsbruck, Innsbruck, Austria

54 Coronary PET/MR of Micro-Calcification in Atherosclerosis
Zahi A. Fayad, et al., Mount Sinai, New York, NY, USA

56 How-I-do-it: Imaging Proximal Coronary Arteries / Coronary Root Imaging
Jonathan Richer, Siemens Healthineers, Wayville, SA, Australia

60 How-I-do-it: Imaging of Vascular Calcification Using PETRA and StarVIBE
Marcos P. Botelho, et al., Northwestern Memorial Hospital, Chicago, IL, USA

62 Compressed Sensing: Application to Time-of-Flight MR Angiography
Tomohisa Okada, et al., Kyoto University, Kyoto, Japan

66 Improving Dynamic MR Angiography: Iterative TWIST
Bernd J. Wintersperger, et al., University of Toronto, Toronto, Ontario, Canada

70 4D Flow MRI
Michael Markl, et al., Feinberg School of Medicine, Northwestern University, Chicago, IL, USA

Meet Siemens Healthineers

76 Introducing Christian Geppert, Head of MR Cardiovascular Predeveloment, Erlangen, Germany and
Christianne Leidecker, Head of Cardiac Functional Team in the US Collaboration Team, Chicago, IL, USA
Cardiac MRI: Image Quality Improvement and Examination Time Shortening After MAGNETOM Avanto®fit Upgrade

Enrico Armando; Leonardo Maria Capitolo; Federico Cesarani
Radiology Department, Ospedale Cardinal Massai, Asti, Italy

Introduction
Cardiac MRI examinations have long been considered too difficult for general radiologists and radiographers and have therefore often been restricted to academic or dedicated heart centers.

The main technical difficulty of a standard cardiac MRI protocol for the assessment of cardiac function and tissue characterization is the high number of breath-hold and cardiac triggered sequences (about fifty) along cardiac planes, which differ from the anatomical sagittal, coronal and axial planes used in almost every other body application.

Gaining time
However, at the Radiology Department of Cardinal Massai Hospital in Asti, Italy, thanks to the 2014 upgrade of our MAGNETOM Avanto scanner to MAGNETOM Avanto®, cardiac MRI has progressed steadily from being the nightmare of every radiographer – due to its length and difficulty – to become a routine examination of about the same duration as a conventional brain protocol for multiple sclerosis.

Before the upgrade, a conventional cardiac MRI protocol including cine SSFP on cardiac long and short axis, evaluation of myocardial edema with triple inversion recovery sequences, perfusion FLASH sequences, early and late enhancement IR or PSIR T1w images, lasted about one hour from the first scout sequence to the last one (Figure 1, Group A).

The first innovation – the introduction of the automatic commands for breath-hold – has shortened the examination time. Since the radiographers are no longer focused on speaking to the patient, they can instead plan the next sequence (Figure 1, Group B), a saving of about 10 minutes.

The second improvement has resulted in a better image quality due to the higher number of coil channels and the possibility to use GRAPPA in cine SSFP sequences: Image resolution is higher, SAR (specific absorption rate) is lower, and it is possible to increase the flip angle of cine SSFP from 55° to 80°, performing short axis cine SSFP sequences after

![Figure 1: Length of MRI examinations in four groups showing the changes in cardiac MRI protocol.](image1)

![Figure 2: While scout and axial images (petrol), cine SSFP (gray) and late enhancement images (light red) were almost always performed in every group, the percentage of examinations with T2 triple IR (red), perfusion (light petrol) and early enhancement (light gray) increased from less than 50% in group A to almost 100% in group D.](image2)
the administration of paramagnetic contrast medium. This protocol change has also allowed a mean reduction in scan time of an additional 8 minutes (Figure 1, Group C).

Finally, by changing the protocol design, we were able to further exploit the features of the syngo MR D13 software. Once the radiographer has set the cardiac long axis and short axis planes, the following sequences automatically copy the measurement parameters, including field-of-view, phase oversampling and matrix. All the radiographer needs to do is adapt the sequence to the cardiac cycle, shortening the examination time even further to 35.8 minutes (Figure 1, Group D).

Conclusion

An analysis of our cardiac examinations reveals a reduction in acquisition times of about 40%, alongside an actual increase in the number of sequences (Figure 2). Prior to the scanner upgrade, the length of the examination meant that rest perfusion imaging, T2 triple inversion recovery imaging and early enhancement were performed in less than 50% of our patients. With the upgrade, almost all our patients undergo a complete examination. Moreover in the definition of acute myocarditis it is now possible to perform every long axis early enhancement IR sequence twice, increasing the number of positive findings because of fewer movement artifacts.

As an example, we share images of a patient who underwent a cardiac MRI examination before the upgrade in the follow-up exam of myocarditis, and after the upgrade during a myocarditis relapse. The first examination lasted one hour and included cine long and short axis and late enhancement PSIR images. The second examination lasted 32 minutes, including cine SSFP short and long axis, T2 IR, rest perfusion imaging, early and late enhancement (Figure 3).

Contact

Enrico Armando, M.D.
Radiology Department
Ospedale Cardinal Massaia Asti
Corso Dante 202
16100 Asti
Italy
enrico.armando@gmail.com
Compressed Sensing: a Paradigm Shift in MRI

Christoph Forman¹; Jens Wetzl²; Carmel Hayes³; Michaela Schmidt¹

¹ Siemens Healthineers, Magnetic Resonance, Erlangen, Germany
² Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany

Introduction

Reducing the complexity and length of examinations has been a major direction of research in magnetic resonance imaging (MRI) in recent years. With the introduction of the Dot engines, the complexity of MR examinations could be reduced through automatization and guidance, providing standardized and time-efficient workflows. Considerable effort has also been spent on developing methods to speed up data acquisition without degrading image quality. Accelerated imaging is a key factor to enable the visualization of rapid physiological or contrast changes in dynamic imaging. Moreover, short scans reduce the risk of artifacts due to any kind of motion during the scan.

A significant speed-up of data acquisition allows both respiratory and cardiac motion to be frozen while maintaining an adequate temporal and spatial resolution. This in turn results in a high-quality and robust examination even for uncooperative patients, since data acquisition may be performed in free breathing. Furthermore, reduced scan time and a decreased number of breath-holds improve patient comfort. Last but not least, accelerated imaging means shorter examinations that can be invested in additional scans, higher resolution, or to improve the overall patient throughput. In this context, parallel imaging and compressed sensing techniques have been proposed to

Figure 1: Additional noise reduces the homogeneity in the image of the resolution phantom (1A), which can also be observed in the line plot along the dashed line. After transformation into a sparse representation using finite differences (1B), the homogeneity can be restored by denoising, i.e., setting all pixels below a threshold level (red line) to 0. After the image is transformed back to its original domain, the phantom is piecewise constant (1C).
significantly speed up the acquisition time while maintaining diagnostic image quality.

Parallel imaging

Parallel imaging [1,2] is well established in current clinical practice to speed up data acquisition in a large number of applications. With this technique, scan acceleration is usually achieved by uniformly sub-sampling k-space, for example, by skipping every other line. The resulting aliasing can be unfolded by incorporating the spatial encoding capabilities of multi-coil receiver arrays. However, the scan time reduction is often restricted to moderate acceleration factors between 2 and 4. This limitation is due to the restricted encoding capabilities in terms of number and position of the receiver coils. Additionally, acquiring less data also leads to a reduced signal-to-noise ratio (SNR).

Compressed sensing

In recent years, compressed sensing [5] has gained large scientific attention. Originally, it was proposed as a general concept to accurately reconstruct a signal from a small number of random measurements [3,4]. A few years later, compressed sensing [1] was introduced to MRI [5] and successfully combined with parallel imaging [6,7]. Exploiting the compressibility of medical images, this method promises to markedly exceed the acceleration rates that are feasible with parallel imaging. Although compressed sensing has denoising properties, it also has to deal with SNR loss from scan acceleration. Hence, possible acceleration factors scale with the native SNR of the scan. Up to now, the potential of compressed sensing has been shown in a large number of applications from 2D to 5D imaging [8–16].

The successful utilization of compressed sensing is a team play of data acquisition and image reconstruction. In the paper introducing compressed sensing to MRI, three criteria were identified as being essential to ensure successful image recovery from sub-sampled data [5]:

- First, the object that is acquired should have a sparse representation after conversion with a mathematical transformation.
- Second, k-space should be sub-sampled such that the aliasing results in incoherent, i.e. noise-like, artifacts in the image.
- Finally, image reconstruction requires a nonlinear, iterative optimization that simultaneously enforces a sparse representation of the resulting image. Thereby, it removes the noise-like artifacts, while it preserves its consistency to the acquired data.

These three essential requirements are discussed in detail below.

Transform sparsity

An image is considered as sparse when its informational content is represented by only a few pixels, while the contribution of the remaining majority of pixels is close to zero. In medical imaging, an angiogram provides a good example for such a sparse representation. However, in MRI, not all images are inherently sparse. But these images can also have a sparse representation utilizing a sparsifying transform. This transform provides an invertible mapping from an image to a sparse representation. Finite differences, i.e. images that contain only edge information, provide a simple technique to achieve a sparse representation, if the image is piecewise constant as shown in Figure 1. Discrete cosine transform and discrete wavelet transform are frequently used in the context of image compression, for example, in JPEG image compression. Utilizing such methods, images may be transformed into a sparse representation (see Fig. 2). In this domain, the content of the image is sufficiently described by only few coefficients, i.e. the bright pixels. The percentage of these pixels relative to the total number of pixels defines the sparsity of the image.
sampling rate. This aliasing can then be unfolded utilizing the spatial encoding capabilities of the multi-coil receiver array and parallel imaging. In contrast, irregular, incoherent sub-sampling of k-space, as required for compressed sensing, would result in a noise-like appearance of sub-sampling artifacts (see Figs. 3F, 3J). Theoretically, completely random sub-sampling is optimal to ensure this noise-like behavior. However, purely random sampling is impractical in the case of MRI. On the one hand, large and random steps in k-space may require large-amplitude gradient steps and should be avoided due to hardware limitations and physical reasons. On the other hand, the sampling trajectory must be repeatable to allow the same acquisition to be reproduced with consistent image quality. Therefore, sub-sampling patterns featuring deterministic properties that mimic random sampling within the given constraints are frequently used for compressed sensing data acquisition. In 2D Cartesian imaging with pure spatial coverage, the sub-sampling is limited to one dimension, as only the phase-encoding direction is sub-sampled in MRI. But in case of 2D dynamic imaging, the sampling pattern can be varied from one time frame to the next in order to maintain sufficient incoherence for compressed sensing. In 3D Cartesian imaging, sub-sampling can be applied in two phase-encoding directions. Alternatively, non-Cartesian sampling trajectories can be used, e.g., radial or spiral imaging, that already facilitate an incoherent sampling of k-space for 2D imaging.

Incoherent sampling

Unlike the regular sub-sampling patterns used for parallel imaging, the data acquisition process for compressed sensing requires that k-space sub-sampling is irregular (see Fig. 3C for regular and 3E, 3I for irregular sampling). In conventional Cartesian parallel imaging, regular sub-sampling of k-space is advantageous in that the phase-encoding gradient is increasing linearly during the measurement, which is beneficial for physical and MRI hardware limitation reasons. However, violating the Nyquist sampling theorem in this manner results in a superposition of shifted replicas of the original signal as illustrated in Figure 3D. The number of replicas equals the chosen sub-sampling rate. This aliasing can then be unfolded utilizing the spatial encoding capabilities of the multi-coil receiver array and parallel imaging. In contrast, irregular, incoherent sub-sampling of k-space, as required for compressed sensing, would result in a noise-like appearance of sub-sampling artifacts (see Figs. 3F, 3J). Theoretically, completely random sub-sampling is optimal to ensure this noise-like behavior. However, purely random sampling is impractical in the case of MRI. On the one hand, large and random steps in k-space may require large-amplitude gradient steps and should be avoided due to hardware limitations and physical reasons. On the other hand, the sampling trajectory must be repeatable to allow the same acquisition to be reproduced with consistent image quality. Therefore, sub-sampling patterns featuring deterministic properties that mimic random sampling within the given constraints are frequently used for compressed sensing data acquisition. In 2D Cartesian imaging with pure spatial coverage, the sub-sampling is limited to one dimension, as only the phase-encoding direction is sub-sampled in MRI. But in case of 2D dynamic imaging, the sampling pattern can be varied from one time frame to the next in order to maintain sufficient incoherence for compressed sensing. In 3D Cartesian imaging, sub-sampling can be applied in two phase-encoding directions. Alternatively, non-Cartesian sampling trajectories can be used, e.g., radial or spiral imaging, that already facilitate an incoherent sampling of k-space for 2D imaging.
Nonlinear image reconstruction

If the two above-mentioned requirements are sufficiently met, the image can be recovered from the sub-sampled data by nonlinear, iterative reconstruction. In this reconstruction, a data fidelity term ensures consistency of the estimated image to the acquired data and a transform sparsity term enforces a sparse representation of the image in the transform domain by solving the following equation:

\[
\min_x \|Ax - y\|_2^2 + \lambda \| \Phi(x) \|_1
\]

The data fidelity term minimizes the least-squares difference between the estimated image, \(x\), and the acquired \(k\)-space data, \(y\). The system matrix, \(A\), describes the data acquisition process, i.e., the transform from spatio-temporal to frequency domain, which is required for the comparison of the image and acquired data. Incorporating parallel imaging, it consists of the coil sensitivity maps of the individual receiver coil elements, the Fourier transform, and the applied sub-sampling pattern during data acquisition. In the transform sparsity term, the image is transformed into a sparse representation by \(\Phi(\cdot)\), for example, using the discrete wavelet transform. In this term, the sum of the absolute values of the pixels in the transform domain, denoted by the \(\ell_1\) norm, is minimized. Hence, the optimization procedure minimizing this equation seeks to find a solution that fulfills both criteria, data consistency and transform sparsity. This optimization procedure is more computationally intensive than conventional reconstruction, e.g., parallel imaging. The balance between data fidelity and sparsity is adjusted with the regularization parameter \(\lambda\), which is usually found empirically. While small values of \(\lambda\) lead to an image that is closer to the acquired data, increasing this value tends to produce an image that is in favor of the sparse solution. When \(\lambda\) is too low, the image will be noisy, and when \(\lambda\) is too high a strongly filtered image appearance may be the consequence. The equation described above is iteratively minimized until a convergence criterion is met or a fixed number of iterations is reached. Figure 4 illustrates this optimization in the example of real-time CINE imaging of the heart.

Transition into clinical routine

Compressed sensing acquisition and reconstruction have been completely integrated into our clinical MRI scanners. Works-in-progress packages have been developed and tested by our clinical cooperation partners world-wide for various applications in the fields of cardiovascular [17–20], neurological [21], musculoskeletal [22–24] and oncological [25] imaging. The additional parameters needed to compose the compressed sensing protocols, for both acquisition and reconstruction, have been seamlessly integrated into our user interface (UI). A selection of possible continuous acceleration factors takes the place of discrete numbers that were familiar from parallel imaging. This facilitates a UI experience with a low level of complexity. The award-winning algorithm for compressed sensing reconstruction [9], ranking first at the ISMRM 2014 “sub-Nyquist” reconstruction challenge, has been fully integrated into the Siemens image reconstruction environment. Without the need for additional hardware, the images are directly calculated inline utilizing the full computational power.

Figure 4: This Figure shows the progress of the optimization procedure to preserve data fidelity and reduce noise-like artifacts exemplarily in a Cardiac 2D CINE dataset (4A–4C). While the top image shows one image of the time series, a temporal profile along the dashed line is plotted below. The incoherent sub-sampling in the spatio-temporal domain results in incoherent artifacts that dominate the image after the first iteration (4A). Enforcing a sparse representation of the image and exploiting temporal redundancy, these artifacts are reduced with an increasing number of iterations (4B). The compressed sensing reconstruction is terminated after 40 iterations and results in an aliasing-free image (4C).
of the reconstruction computer. Compressed sensing reconstruction is performed on a graphics processing unit, which provides a significant speed-up in processing time. For example, the image series of one cardiac real-time CINE slice is processed in 10 to 15 seconds.

Thanks to its high acceleration rate due to compressed sensing, real-time sequences allow for a temporal and spatial resolution comparable to that of conventional segmented acquisitions. For example, compressed sensing in cardiac imaging permits fast quantification of left-ventricular (LV) function in a single breath-hold [26]. As demonstrated in Figure 5, this sequence still provides diagnostic images for LV function quantification even in challenging scenarios, such as in the presence of arrhythmia, where conventional sequences usually fail. This sequence may also be applied in free breathing, which is beneficial for patients who are not able to hold their breath sufficiently and, in general, allows for a simplified and more patient-friendly examination workflow.

Conclusion

Compressed sensing facilitates rapid MR imaging by exploiting the fact that medical images have a sparse representation in a certain transfer domain. Representing a team play of data acquisition and image reconstruction, this allows for the reconstruction of artifact-free images following incoherent data acquisition. The acceleration enables a reduction in the acquisition time or an improvement in the spatial and/or temporal resolution. Real-time imaging featuring compressed sensing helps to reduce the need for breath-holding or ECG triggering. The integration of protocols based on compressed sensing in clinical workflows allows a significant reduction in the examination time for each patient. Our generalized integration of compressed sensing in the scanner environment will allow for the straightforward introduction of further applications that are likely to come in the near future.

References

Exercise Cardiac MRI, a Clinical Reality with Compressed Sensing

Wendy Strugnell, BAppSc(MIT) FSMRT; Aaron Lin, MBChB, FRACP

Richard Slaughter Centre of Excellence in Cardiovascular MRI, The Prince Charles Hospital, Brisbane, Australia

Introduction

Non-invasive assessment of ventricular function plays an important role in the diagnosis and management of cardiac diseases. With its high temporal and spatial resolution, cardiac MRI is considered the most accurate non-invasive tool for providing left ventricular (LV) volumes, ejection fraction (EF) and mass at rest [1–3]. Cardiac MRI is also superior to other imaging modalities for quantitative assessment of the complexly shaped right ventricle (RV) [4–6].

Due to practical and technical limitations of imaging, clinical cardiac assessment is conventionally performed with the patient at rest. However, in many heart diseases, symptoms do not occur at rest and ventricular assessment during exercise is necessary to unmask ventricular dysfunction that is not apparent at rest. Despite recent technological advances across imaging modalities, assessment of dynamic ventricular response during exercise remains challenging. Until now, non-invasive quantitative cardiac assessment during exercise has been performed using echocardiography and nuclear scintigraphy, both of which have significant limitations, particularly in the assessment of the RV. As MRI is superior to other imaging modalities in accuracy and reproducibility of ventricular functional results at rest, there is a clinical need for a reliable MRI assessment of the heart during exercise.

Limitations of cardiac MRI during exercise

Quantitative MRI assessment of cardiac function requires the acquisition of a stack of ECG-gated, cine ventricular short-axis images [5]. This time-consuming process requires multiple breath-holds to cover the entire ventricle and can be difficult for some patients to complete. This process can be made more challenging by exercise, particularly in patients with cardiac and pulmonary diseases whose baseline exercise and respiratory capacities are limited.

These limitations have driven the search for faster imaging techniques that maintain acceptable image quality and temporal resolution from resting heart rates through to accelerated heart rates during exercise. Real-time MRI is less susceptible to motion caused either by exercising or breathing and can be performed without ECG gating. La Gerche et al. [7] recently demonstrated that when real-time ungated MRI is combined with post hoc analysis incorporating compensation for respiratory motion, accurate biventricular volumes could be measured during maximal exercise. However, the methodology is labor intensive with lengthy post-processing times, and the authors acknowledge that there is significant difficulty in identifying the endocardium at higher levels of exercise. Access to commercially available processing software to enable analysis is another major limitation of this technique. Most real-time sequences also have low temporal resolution, which may affect accuracy at the high heart rates encountered during exercise. Clearly, the pursuit for a fast, clinically feasible MRI technique for evaluating the ventricles during exercise remains.

Compressed sensing MRI

Compressed sensing (CS)1 was recently proposed as a means to considerably accelerate data acquisition through sparse sampling and reconstructing signals or images from significantly fewer measurements than were traditionally

1 510(k) pending. Compressed Sensing is not commercially available. Future availability cannot be guaranteed.
thought necessary [8, 9]. Using incoherent sparse sampling, nonlinear reconstruction algorithms and iterative processing, these methods reconstruct undersampled data from significantly fewer measurements whilst maintaining in-plane spatial resolution [10]. Cardiac MRI is ideally suited to CS techniques. Vincenti et al. [11] demonstrated that the application of CS to cardiac imaging enabled several-fold acceleration and achieved a cine acquisition of the whole heart in one breath-hold. With local institutional review board approval, we recently tested a prototype, ECG-triggered balanced steady-state free precession cine sequence with compressed sensing (CS_bSSFP)1 (net acceleration of 8) against the conventional bSSFP sequence (net acceleration of 2) on clinical patients using comparable parameters for spatial and temporal resolution. We concluded that accurate and reproducible volumetric quantifications equaling those of conventional bSSFP could be achieved in the assessment of the left ventricle at rest in various cardiac disease states at significantly shorter acquisition times [12] (Fig. 1).

Exercise cardiac MRI

Patients with cardiac and pulmonary diseases typically have limited exercise tolerance and breath-hold capacity. Quantitation of ventricular function by cardiac MRI during exercise requires:

- Fast acquisition covering the whole ventricle to avoid fatigue from exercise (maximum total exercise time 15 minutes);
- Short duration of breath-holds to improve patient compliance and to minimize heart rate recovery during suspension of exercise;
- ECG gating to enable segmented data in discrete cardiac phases for ventricular analysis using commercially available software;
- Acceptable spatial resolution to delineate ventricular borders for analysis; and
- Sufficient temporal resolution for accurate determination of end-diastole and end-systole at high heart rates.

To meet all the above requirements, the prototype CS_bSSFP protocol was modified for use under exercise conditions. Typical imaging parameters are given in Table 1. A net acceleration factor of 11.5 was achieved which enables whole heart coverage in one or two breath-holds (5–7 s duration depending on heart rate), with in-plane spatial resolution of 2 mm and temporal resolution in the order of 20 ms. CS_bSSFP images in the LV short-axis (SAX) and modified RV SAX [13] are shown in Figure 2.

Exercise MRI protocol

Pre-MRI exercise testing

Prior to the exercise cardiac MRI, a cardiopulmonary exercise test (CPET) is performed outside the MRI room using a portable metabolic system (Metamax, Cortex BXB, Leipzig, Germany) and an MRI cycle ergometer (Lode, Groningen, The Netherlands). The maximal workload achievable by the patient is determined and then used to calculate the sub-maximal workloads for exercise cardiac MRI. Typically, this is between 25–60 W.

During CPET, the patient is coached by the physiotherapist to hold their breath without valsalva breathing. This is to reduce the potential for intra-thoracic pressure increasing

<table>
<thead>
<tr>
<th></th>
<th>bSSFP</th>
<th>CS_bSSFP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR (ms)</td>
<td>1.25</td>
<td>2.53</td>
</tr>
<tr>
<td>TE (ms)</td>
<td>1.25</td>
<td>1</td>
</tr>
<tr>
<td>Field-of-view (mm)</td>
<td>380 x 290</td>
<td>380 x 312</td>
</tr>
<tr>
<td>Image Matrix</td>
<td>1.25 x 1.25</td>
<td>1.98 x 1.98</td>
</tr>
<tr>
<td>Spatial resolution (mm)</td>
<td>~30</td>
<td>~20</td>
</tr>
<tr>
<td>Temporal resolution (ms)</td>
<td>~10</td>
<td>~30</td>
</tr>
<tr>
<td>Slice thickness/gap (mm)</td>
<td>8 mm / 2 mm</td>
<td>8 mm / 2 mm</td>
</tr>
<tr>
<td>Flip angle (°)</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Bandwidth (Hz/pixel)</td>
<td>914</td>
<td>898</td>
</tr>
<tr>
<td>Heartbeats per slice</td>
<td>14–20</td>
<td>1 or 2*</td>
</tr>
<tr>
<td>Cardiac phases</td>
<td>30</td>
<td>18–25*</td>
</tr>
<tr>
<td>ECG triggering</td>
<td>Retrospective</td>
<td>Prospective</td>
</tr>
<tr>
<td>Breath-holds</td>
<td>10</td>
<td>1 or 2*</td>
</tr>
<tr>
<td>Breath-hold duration (s)</td>
<td>10</td>
<td>5–7*</td>
</tr>
</tbody>
</table>

*Heart rate dependent

Table 1: Imaging parameters of conventional bSSFP and CS_bSSFP1 sequences.

Figure 2: Midventricular LV short-axis and modified RV short-axis images from the highly accelerated CS_bSSFP acquisition (net acceleration 11.5) at end-diastole from the same patient.

Reprinted from MAGNETOM Flash (66) 3/2016
during breath-hold, which in turn could cause reduced venous return and cardiac output.

MRI protocol

After a recovery period, the patient is positioned in the MRI scanner (1.5T, MAGNETOM Aera). ECG and blood oxygen saturation (SPO2) monitoring is used throughout the examination under the supervision of a cardiologist. After cardiac localizers are obtained, both LV short axis and modified RV short axis stacks are acquired at rest and two pre-determined submaximal workloads (Rest: 0 W, Exercise 1: 25 W and Exercise 2: 40–60 W). In order to achieve steady-state exercise response, subjects cycle at each workload for 3 minutes prior to image acquisition. Between breath-holds, subjects resume cycling for 45 s to return to steady-state exercise response (Fig. 3).

Exercise MRI Analysis

Image analysis is performed off-line using cvi42 software (Circle Cardiovascular Imaging, Calgary, Canada) and all standard measurements of cardiac function are obtained.

Clinical feasibility

In pilot testing, we demonstrated that this exercise MRI protocol is feasible in patients, healthy controls and in well-trained athletes, with clinically acceptable image quality (Fig. 4). Exercise ergometry within the MRI scanner is well tolerated and breath-holds during image acquisition are achievable at submaximal exertion. Quantitative ventricular data and dynamic ventricular response during exercise can be determined using the ultrafast prototype CS_bSSFP sequence.

Clinical applications and potential

Insights from analysis of pressure-volume loops have demonstrated that a ventricle that adapts well is able to increase its contractility to match the chronic increase in afterload and its preservation is important in maintaining ventricular efficiency [14]. Ventricular systolic function adaptation to afterload can be tested dynamically to determine a contractile reserve, the capacity to increase contractility at a given level of loading. Contractile reserve has been shown to be a strong prognostic predictor in patients with left heart failure [15].

Assessment of RV function during exercise may provide an early indication of RV dysfunction and add incremental value in the clinical assessment of patients with right heart disease. In the setting of a chronic pressure overload state such as in pulmonary arterial hypertension (PAH), RV contractile reserve may be a more sensitive marker of hemodynamic ventricular dysfunction.

Currently, there is limited data on RV function during exercise and RV contractile reserve, largely due to the limitations of imaging during exercise. In a small study of pulmonary arterial hypertension (PAH) patients and normal controls, we demonstrated that although having near-normal ventricular function at rest, PAH patients were unable to increase their RV contractile function during exercise [16] (Fig. 5).

Exercise MRI also has the potential to predict adverse surgical outcomes in patients with congenital heart disease undergoing valve replacement surgery. The surgical outcome is likely to be better in patients with a ventricle shown to have contractile reserve. Exercise MRI may enable better-informed decisions about the timing of surgical and therapeutic interventions by detecting early ventricular impairment during exercise (particularly in the right ventricle). By providing information on ventricular contractile reserve, exercise MRI may facilitate improved prognostication of patients and has the potential to predict adverse surgical outcomes.

Conclusions

We have demonstrated that a highly accelerated imaging sequence using compressed sensing can facilitate clinically useful dynamic assessment of biventricular response during exercise with a reliability that was not previously possible.
Figure 4A–C: Midventricular LV short-axis images at rest and two submaximal workloads at end-diastole using the CS_bSSFP acquisition in a male control.

Figure 4D–F: Midventricular modified RV short-axis images at rest and two submaximal workloads at end-diastole using the CS_bSSFP acquisition in a female control.

Figure 5A: Exercise MRI unmasks RV dysfunction not evident at rest in patients with pulmonary arterial hypertension (PAH): Despite having near-normal RV function at rest, PAH patients were unable to increase their RV contractile function during exercise.

Figure 5B,C: Midventricular LV short-axis images showing a left-ward deviation of the interventricular septum in early diastole during sub-maximal workload in a pulmonary arterial hypertension patient.
Acknowledgments

• Dr Richard Slaughter, Radiologist, for clinical advice and expertise.
• Mr Andrew Trotter for assistance with MR protocol development and clinical implementation.
• Professor Norman Morris and Ms Helen Seale (physiotherapists) for assistance with exercise protocol development and clinical implementation.
• The Prince Charles Hospital Foundation for support to purchase the MRI cycle ergometer and ongoing support for the exercise MRI program.
• Staff of the Richard Slaughter Centre of Excellence for their continued support and dedication.

References

Contact

Ms Wendy Strugnell
Richard Slaughter Centre of Excellence in Cardiovascular Magnetic Resonance Imaging
The Prince Charles Hospital
627 Rode Rd
Chermside QLD 4032
Australia
Phone: +61-7-3139 6849
wendy.strugnell@health.qld.gov.au

Wendy Strugnell
Aaron Lin
Cardiovascular Magnetic Resonance – an Effective Approach in Cardiology also Suitable for Very Sick Patients. Case Examples

Stephanie Funk, M.D.; Edyta Blaszczyk, M.D.; Agnieszka Toepper, M.D.; Jeanette Schulz-Menger, M.D.

Working Group Cardiac MRI, Experimental and Clinical Research Center, a cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine and HELIOS Clinic Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany

Background

Cardiovascular Magnetic Resonance (CMR) is able to provide unique information regarding myocardial tissue differentiation on top of a comprehensive examination of basic cardiac function. It is meanwhile included in as many as 29 guidelines of the European Society of Cardiology [1]. Nevertheless, it is not routinely used in all locations nor is its versatility exploited.

An obstacle faced by the CMR scan is the perception that it is difficult and lengthy. However, the development of more robust and faster techniques have significantly reduced the scan-time over recent years. Depending on the indication, a scan time can range between 5 and 45 minutes (see table 1). Of course, difficult cases, such as congenital heart disease, or unusual cases may take longer. Medical doctors often mistakenly believe that CMR is unsuitable for very sick patients even though it can provide unique information for further therapy guidance. However, recent developments allow CMR for patients unable to hold their breath as well as in arrhythmias, notably due to real-time- and motion-corrected imaging techniques. Currently, even though high-end image quality may be slightly impaired, most clinical requests can be covered. It is crucial here to focus on the clinical need of such patients as all areas of clinical practice are covered. Real-time cines are already available in clinical routine. Furthermore, multi-slice LGE images are available as non-breath-hold techniques. Motion-corrected perfusion imaging allows stress-perfusion in free-breathing.

There is no doubt that CMR can easily perform an assessment of coronary artery disease (CAD) in a well-standardized fashion [2]. However, a unique feature of CMR is that it can differentiate myocardial tissue, including the detection of irreversible changes such as necrosis, fibrosis and fat infiltration, as well as reversible injury such as edema. Quantitative parametric mapping techniques have added significantly to other contrast-enhanced and non-contrast-enhanced imaging techniques [3–5]. Back in 2009, the German Pilot phase of the EuroCMR-registry highlighted the high percentage of referrals due to non-ischemic cardiomyopathies (CMP) and inflammatory diseases [6], which was confirmed by our own data [7].

A relatively new technique allows the robust differentiation of fatty infiltration in fat/water separated images [8]. Very tiny fatty infiltrations are detectable in patients with muscular dystrophy. The sequence allows also the differentiation of bright signal as induced by fibrosis (LGE-imaging) and fat, which will hopefully bring the non-invasive tissue differentiation back in the guidelines of arrhythmogenic cardiomyopathies.

A significant advantage of CMR is that it enables the early detection of myocardial injury in preserved ejection fraction, allowing a decision on therapy to be taken sooner.

The following cases illustrate the potential speed of a CMR examination and its high-quality differentiation of tissue even in very sick patients. All scans were performed at a 1.5 Tesla MAGNETOM Avanto®.

<table>
<thead>
<tr>
<th>Indication</th>
<th>Average scan time in minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left and right ventricular function</td>
<td>5</td>
</tr>
<tr>
<td>Angiography</td>
<td>10</td>
</tr>
<tr>
<td>Inflammatory disease</td>
<td>20–30</td>
</tr>
<tr>
<td>Viability assessment</td>
<td>20–30</td>
</tr>
<tr>
<td>Adenosine perfusion</td>
<td>15–45</td>
</tr>
<tr>
<td>Valvular disorders</td>
<td>10–30</td>
</tr>
<tr>
<td>Cardiac masses</td>
<td>10–60</td>
</tr>
<tr>
<td>Congenital Heart Disease</td>
<td>20–60</td>
</tr>
<tr>
<td>Cardiomyopathies</td>
<td>20–60</td>
</tr>
</tbody>
</table>

Table 1: Average scan time in routine CMR indications.
Case 1: Muscular dystrophy

A 43-year-old man was referred to our university cardiologic outpatient clinic due to muscular dystrophy. He had been diagnosed with Limb-Girdle Muscular Dystrophy Type 2I by use of molecular genetic testing a couple of months previously.

Muscular dystrophy is a heterogeneous group characterized by progressive skeletal muscle wasting and weakness. Cardiac involvement is a frequently encountered finding in general, but currently not described in all entities. It may lead to life-limiting heart failure and arrhythmias in primary myopathies.

There is evidence that undetected arrhythmias in neuromuscular diseases cause earlier clinical impairment than other cardiac diseases. Therefore indications for device implantations in muscular dystrophies must be more rigorous than in other cardiac disorders. A sooner prophylactic implant of a cardioverter-defibrillator (ICD) is required because of the individual’s high risk of sudden cardiac arrest [9].

Our patient was severely disabled, wheelchair-bound for 30 years and unable to take care of himself. He had partial movement in one hand only, enabling him to direct his fully electronic wheel chair. The biopsy of his skeletal muscles showed inclusion-body myositis.

The patient complained about palpitations. No syncope was reported. Echocardiography did not reveal any abnormalities, but due to his body size (BMI = 33.27 kg/m² BSA 2.34 m²) and the upright position, ultrasound conditions were impaired. However, a 24-hour ECG revealed a short episode (five heart beats) of non-sustained VT (HF 150 beats per minute (bpm)). Apart from obesity, he had no risk factors for coronary artery disease (RR 130/90, no diabetes, non-smoker, cholesterol 158 mg/dl, LDL 52 mg/dl, no family history of early heart disease).

We performed a CMR to detect potential myocardial injury. The patient wasn’t able to stay long in the scanner due to muscle pain, dyspnea and skeletal muscle contracture. His breath-holding capability was impaired.

The left ventricular function was normal (Figs. 1A, B as well as 2-chamber view cine in the online-data supplement).

However, extensive epicardial fat with subepicardial and intramural fatty replacement of the myocardium was detected. Application of fat-water separated imaging [8] allowed the differentiation of fat mimicking fibrosis in fibrosis imaging by LGE (Figs. 1C–H).

In principle, our patient qualified for an ICD implantation. But due to his co-morbidity and the severe fatty replacement of the myocardium, the decision was challenging. The patient was reluctant for any kind of surgery. Finally a loop-recorder was implanted pending a further decision.

Figure 1: 43-year-old patient with Limb-Girdle Muscular Dystrophy Type 2I and normal LV function (LVEF 57%). Assessment of function and wall motion by cine Steady-State Free Precession (SSFP) in 2-chamber view in end-diastole (1A) and end-systole (1B) with no wall motion abnormality, but with already visible myocardium structure abnormality (arrows).

Tissue differentiation: All following images are given in the 2-chamber view and in a midventricular short axis. Fat/water imaging shows extensive epicardial fat with subepicardial and intramural fatty replacement of the myocardium in bright (1C, D) and accordingly dark signal (arrows) (1E, F). Fibrosis imaging (LGE) shows a bright signal indicating scar and fatty replacement (1G, H). Only the combination of LGE and fat imaging allows the differentiation of tissue character.
Case 2: Takotsubo cardiomyopathy

A 71-year-old female patient was admitted to the intensive care unit (ICU) after experiencing left-sided hemiplegia caused by a brain tumor. The newly diagnosed tumor was a metastasis of a sigmoid adenocarcinoma.

Initially, the patient presented with tachycardia and elevated troponin T. The ECG showed negative T-waves indicating a myocardial injury.

A CMR was performed for myocardial tissue differentiation including inflammation. As the patient had increasing difficulties with the repeated breath-holding, the examination had to be fast, yet precise. Therefore, for inflammatory assessment, T2 mapping replaced T2-weighted imaging, since T2 mapping is shorter and less sensitive to motion-artifacts.

Breath-held late enhancement images for fibrosis imaging were not diagnostic. As the patient could not hold her breath repeatedly, artifacts occurred. Thus we used multi-sliced non-breath-hold sequences.

The patient had a mid-range reduced ejection fraction with a midventricular akinesia septal and lateral (Figs. 2A–D). In the area of the wall motion abnormalities an edema was detectable (Figs. 2E, F). As a potential sign of inflammatory reaction the patient also showed pleural effusion. This, however, could also have been a sign of the volume loading administered at the ICU.

There was no fibrosis in the late gadolinium-enhancement images.

We diagnosed an inverse takotsubo cardiomyopathy (TTC) with midventricular akinesia and edema. The stressor in this case was probably the cerebral tumor. As previously described, certain cerebral disorders, especially subarachnoid hemorrhage, can induce TTC [10, 11]. An edema in the region of a large wall motion abnormality without any focal fibrosis is a typical finding of TTC [12].

CMR is able to detect inflammatory reactions even in very sick patients using these techniques. The lack of scar in a region with a large wall motion abnormality is prognostically-relevant information and helps to guide patients in an early stage of disease.

Case 3: Suspicion for acute myocarditis

A 70-year-old male patient was referred to the MR-Unit from the ICU of an external hospital with heart failure symptoms with congestion and pneumonia. He presented with an AV-dissociation with a high escape rhythm and was supported by a temporary pacemaker.
Coronary artery disease was ruled out in the external hospital. Heart failure and rhythm problems despite lack of coronary heart disease were suggestive for myocarditis as the most presumptive cause and he was admitted to confirm the diagnosis.

The temporary pacemaker could be removed for the scan as the patient presented with high escape rhythm with heart frequency between 40–50 bpm, and an experienced cardiologist performed the scan. The pacemaker lead was taken away directly before the scan and the patient was monitored by ECG, POX and O₂-saturation. The latter was between 80% and 90%. Due to pneumonia he was supported by oxygen. Despite this support he was not able to follow the breath-hold commands. CMR was therefore conducted in free-breathing and the standard techniques had to be replaced.

Instead of steady-state free precession cine (Fig. 3A) we used real-time cine sequences (Fig. 3B) to assess left ventricular function. T2 mapping was used instead of T2-weighted images for the evaluation of edema (Figs. 3C, D). For the detection of scars and fibrosis, post-contrast T1 mapping (Figs. 3E, F) and a multi-slice free breathing protocol (Fig. 3G) were used. A breath-held PSIR (Fig. 3H) showed too many artifacts.

The examination was performed without complications. A dilated left ventricle with a slightly reduced systolic function was diagnosed. The T2 maps showed prolonged times septal and inferoseptal (67 ms) being suggestive of an edema in these areas (Figs. 3C, D). There were multiple focal fibrosis, but none in the region of the described edema. As the patient had suffered a myocarditis years before, the fibrosis was defined as a sign of this previous myocarditis. However, the edema suggested an additional ongoing inflammation.

The interim finding was that the arrhythmia could be caused by the old scar or by the active inflammation. As the patient was suffering from pneumonia with a myocardial involvement, the decision was to wait until recovery from pneumonia and then to decide about a pacemaker implantation.

Case 4: Suspicion of coronary artery disease

A 42-year-old female with shortness of breath and atypical thoracical pain was referred to the MR-Unit for adenosine stress CMR to exclude significant coronary artery disease. She had a known X-ray contrast media allergy and a chronic fatigue syndrome (not able to perform ergometric testing). Due to claustrophobia-related self-premedication with

Figure 3: 70-year-old male patient with suspicion for acute myocarditis. He had a temporary pacemaker due to AV dissociation, which was removed for the examination. He was not able to hold his breath and his heart rate was 50 bpm. Segmented cine SSFP were not sufficient (3A), real cine time technique was applied (3B) showing LV dilatation and slightly reduced LV function (47%).

Tissue differentiation: T2 mapping showed prolonged times (67 ms) being suggestive of an edema in these areas (3C, D). T1 mapping (3E, F) was increased (1050 ms) indicating fibrosis. Free-breathing focal fibrosis imaging (LGE) was performed after single dose contrast application using overview technique (3G), as breath-held PSIR failed (3H).
Figure 4:

42-year-old female patient with suspicion of coronary artery disease and severe claustrophobia was referred for exclusion of CAD based on an intermediate pre-test probability. She received a shortened adenosine protocol (4A). Scan time: approximately 15 minutes. Her anatomy did not allow a stress echo-cardiography and due to her age ionizing radiation was avoided. In the non-breath-hold stress perfusion with motion correction (4C) ischemia could be ruled out. The non-breath-hold late gadolinium enhancement technique showed no fibrosis or scar (4B).

Scan protocol

<table>
<thead>
<tr>
<th>Localiser</th>
<th>Function LAX</th>
<th>Stress perfusion</th>
<th>Function SAX</th>
<th>LGE overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 min</td>
<td>3 min</td>
<td>6 min</td>
<td>4 min</td>
<td>1 min</td>
</tr>
</tbody>
</table>

There is a strong need for fast and robust techniques. Standardized protocols are an excellent base for a dedicated and focused scan.

At the last SCMR board meeting the view was expressed that CMR will give more definitive, relevant, and actionable answers than other non-invasive imaging techniques. A CMR exam provides comprehensive information and has superior diagnostic and prognostic power, without the need for radiation.

Furthermore, there are CMR-only capabilities including virtual heart biopsy, high-resolution perfusion imaging and advanced blood flow analysis. This also applies for sick patients.

References

2. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E, Society for Cardiovascular Magnetic Resonance Board of Trustees Task Force on Standardized P. Standardized cardiovascular magnetic resonance

Contact
Professor Dr. Jeanette Schulz-Menger
University Medicine Berlin, Charité Campus Buch, ECRC
HELIOS Clinics Berlin Buch, Department for Cardiology and Nephrology
Schönebecker Chaussee 50
13125 Berlin
Germany
Phone: +49 30 040153536
jeannete.schulz-menger@charite.de
Stress-Mapping for the Assessment of Myocardial Ischemia: New Potential Clinical Applications of Parametric Mapping

1 Research Physician, Jose Michel Kalaf Research Institute, Cardiologist, Radiologia Clinica de Campinas, Campinas, Brazil
2 Deputy Clinical Director, Oxford Centre for Clinical Magnetic Resonance Research, Associate Professor of Cardiovascular Medicine, Honorary Consultant Cardiologist, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, Oxfordshire, UK
3 Head of Advanced Cardiovascular Imaging Analysis, Associate Professor of Biomedical Imaging, Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, Oxfordshire, UK

Abstract

Parametric mapping has been used to differentiate common pathological changes in the myocardium at rest, with identification of variations in the extracellular compartments of the heart. While most of the interest has been drawn to studying interstitial changes of the myocardium, these techniques also allow us to study the physiology and pathology associated with the intravascular compartment of the extracellular space. Sensitive to changes in myocardial blood volume and flow, as well as oxygen extraction fraction and possibly oxygen consumption rate, quantitative mapping has potential new clinical applications waiting to be explored. With the addition of pharmacologic vasodilation, stress and rest T1 mapping has been shown to be useful in differentiating ischemic, infarcted and normal myocardium, as well as in assessing coronary vasodilatory reserve in patients without significant coronary artery disease. T2 mapping, based on previous oxygenation-sensitive cardiovascular magnetic resonance studies using relative signal intensity changes, may allow direct quantification of myocardial demand and confirmation of pharmacological vasodilatation before contrast injection. Stress-mapping may allow for new and complimentary information to be extracted in addition to current protocols used in clinical cardiovascular magnetic resonance, without the need for gadolinium-based contrast agents (GBCA).

Introduction

Parametric mapping evaluation of the heart has developed significantly over recent years, allowing for direct quantitative measurement of myocardial T1, T2 and T2* [1]. Since the introduction of the first high-resolution pulse sequences for cardiac mapping, the focus of most studies has been directed at analyzing the underlying tissue composition and structure of the myocardium and extracellular space, using these parameters as surrogate markers for diffuse fibrosis, collagen, amyloid, edema, iron and fat deposition [2]. Despite the important clinical applications developed from these studies, T1 and T2 relaxation times also reflect the intravascular components of blood in the myocardium: myocardial blood flow (MBF) and volume regulation by exercise or pharmacologically induced vasodilation and capillary recruitment may change the extracellular water content or relative amounts of deoxyhemoglobin, thereby altering these mapping parameters.

Most studies with parametric mapping of the heart have been performed during rest conditions when the impact of the above factors may not have a significant influence on the measured relaxation times at rest. However, after vasodilation, myocardial blood volume (MBV), which constitutes only approximately 10% of the total myocardial volume at rest [3], may double with maximal blood flow [4, 5]. Along with changes in MBV, oxygen extraction fraction (OEF) is also significantly affected by vasodilation, with up to a 70% difference observed with hyperemia [6, 7], resulting in reduced deoxyhemoglobin concentration. MBV and MBF

Key points

1. Stress-mapping using current T1 and T2 parametric mapping sequences allows for assessment of myocardial tissue during stress, reflecting changes in the myocardial intravascular components.
2. Native T1 mapping has been shown to differentiate ischemic, infarcted and normal myocardium after stress without the need for gadolinium-based contrast agents.
3. T2 mapping might be useful to investigate myocardium oxygenation-sensitive changes during stress, with potential applications for identifying the effectiveness of pharmacological vasodilatation and possible areas of ischemia.
What is T1 mapping?

T1 (or spin-lattice) relaxation time is a magnetic resonance property that describes how quickly the longitudinal component of magnetization returns to thermal equilibrium. In simple systems, this process may be defined mathematically using Bloch equations in an idealized manner. Although basic Bloch equations may not completely characterize the complexity of living tissues and their in vivo environment, T1 relaxations times may be measured for the purpose of quantitative tissue characterization.

Measured T1 relaxation times may be affected by intrinsic tissue properties and its extrinsic environment, depending on the chosen method. As in most quantitative approaches, each tissue type is expected to have a normal range of T1 values, deviation from which may indicate disease or a change in physiology. In particular, increased free water content in tissue, such as edema, will significantly prolong T1 relaxation times, whereas significant iron and fat content typically lower T1 relaxation times [20]. Myocardial T1 values may be measured using a number of T1 mapping sequences, including those based on inversion-recovery, saturation-recovery, or a hybrid approach [21–24]. Current evidence demonstrates that myocardial T1 values can be measured within a tight normal range, with clinically-relevant sensitivity to changes in a wide range of cardiac diseases [20].

How T1 mapping can be used for the detection of myocardial ischemia – basic principles

Native, or pre-contrast, T1 times reflect a composite signal from both the intracellular and extracellular space, the latter of which includes the interstitial and intravascular compartments. MBV, from the intravascular compartment, constitutes 10% of the total myocardial volume at rest [3], and contributes to the resting myocardial T1 through the partial volume of blood [25]. In normal myocardium supplied by normal, unobstructed coronary arteries, there is significant coronary vasodilatory reserve, which can be elicited with administration of adenosine vasodilator stress.

While coronary vasodilation is usually associated with increased coronary flow, the increase in vascular cross-sectional area also increases intramyocardial blood volume. Given that blood T1 is typically much longer than myocardial T1, this is expected to increase myocardial T1. Using conventional adenosine vasodilatory stress protocols, a 6% increase in myocardial T1 during vasodilator stress has been reported in normal volunteers both at 1.5 and 3T [17].

Stress and rest T1 mapping in patients with coronary artery disease

In patients with coronary artery disease (CAD), the resting T1 in areas of chronic myocardial infarction is typically significantly elevated compared to normal myocardium, and shows no change in T1 during vasodilatory stress [17] (Figure 1). Interestingly, ischemic myocardium subtended by significant coronary stenosis have compensatory downstream coronary vasodilatation even at rest, and this is detectable as mildly elevated resting myocardial T1 values, but do not show further coronary vasodilatory response during stress, and, thus, no change in stress myocardial T1 [17]. Accordingly, adenosine stress and rest T1 mapping may be used to distinguish normal, infarcted and ischemic myocardium, without the need for gadolinium contrast agents, due to their distinctive rest and stress T1 profiles [17].

Stress and rest T1 mapping in patients without obstructive CAD

Adenosine stress and rest T1 mapping may also be used to assess coronary vasodilatory reserve in patients without obstructive CAD. It has been shown that in patients with severe aortic stenosis, but without significant CAD on angiography, increased coronary blood flow and

Table 1: Effects of pharmacological vasodilation on myocardial parameters measured by CMR.

<table>
<thead>
<tr>
<th>Difference from resting conditions</th>
<th>Rate-Pressure Product</th>
<th>MBF</th>
<th>MBV</th>
<th>OEF</th>
<th>MVO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% to 60%</td>
<td>200% to 300%</td>
<td>30% to 100%</td>
<td>-40% to -70%</td>
<td>30% to 60%</td>
<td></td>
</tr>
</tbody>
</table>

CMR = cardiovascular magnetic resonance; MBF = myocardial blood flow; MBV = myocardial blood volume; OEF = oxygen extraction fraction; MVO₂ = oxygen consumption ratio
vasodilation is present at rest due to the increased demands of the pressure-overloaded and hypertrophied myocardium [26–28]. This expansion in the myocardial intravascular compartment is detectable using adenosine stress and rest T1 mapping, manifest as an elevated resting myocardial T1, but achieving the same maximal stress T1 response when compared to normal individuals [16]. Interestingly, this diminished stress T1 response normalizes 7 months after aortic valve replacement with relief of the pressure overload. This observation supports the notion that, in severe AS, increased resting myocardial T1 may predominantly reflect the changes in intravascular compartment, rather than solely from the presence of diffuse myocardial fibrosis in the interstitial compartment as previously believed. Stress and rest T1 mapping appear to hold promise for assessing coronary vascular function and vasodilatory reserve also in the absence of obstructive CAD.

Caveats and limitations
As for any novel MR technique, the biological mechanisms of native and stress T1 are not yet fully elucidated. Although the normal stress T1 response of 6% appears to be conserved across commonly applied field strengths within a single technique [17], this may not be directly applicable for other confounds or methods without further validation studies. The change in stress and rest T1 is relatively modest at 6% compared to the typical repeat variability of T1 measures of ~2%; much further work is required to make it into a clinically-robust diagnostic method. In view of the dynamic heart rate range encountered during physiologic and pharmacologic stress, it is recommended to use methods free of heart-rate dependency for stress T1 mapping. MOLLI techniques that exhibit heart-rate dependency appear to show lower stress T1 responses [18]. Saturation-based techniques [23] have little heart-rate dependency, and with ongoing improvements in SNR [29], maybe also find application in stress T1 mapping.

Future directions and implications
Adenosine stress and rest T1 mapping shows promise for the detection of ischemia, and the assessment of coronary reserve and, perhaps, the health of the micro-coronary circulation without the need for gadolinium contrast agents. Stress and rest T1 mapping is an area of active research, including validation against quantitative perfusion measures, invasive coronary measurements and diagnostic performance in a range of cardiac conditions. The effects of exercise, other pharmacological stress agents, as well as caffeine and other known modulators of vascular reactivity on T1 may be explored to determine clinical applicability. Over time, collective evidence will allow better understanding of the mechanisms for the observed changes for this emerging technique and its clinical utility.

T2 mapping
BOLD imaging and T2/T2* maps
T2 and T2* changes underlie the Blood Oxygenation Level Dependent (BOLD) contrast mechanism through a complex
relationship between tissue metabolic demands, oxygen delivery (MBF) and myocardial blood oxygen levels (MBV, mainly capillary and venous) [9, 13, 30]. Oxygenation-sensitive CMR has been used for many years to reflect changes in the intrinsic contrast properties of deoxygenated hemoglobin with most of the previous work using BOLD T2-weighted images or T2* imaging but not specific T2 parametric maps [31]. BOLD imaging relies on the fact that with vasodilation and maintenance of oxygen demand, there will be a decrease in the levels of de-oxygenated hemoglobin in the venous capillary bed resulting in an increase in T2 or T2* values. Considering a doubling of the MBV during vasodilation with a reduction of 40 to 70% of the OEF (the other components of the extravascular space being stable), the changes in T2/T2* will predominantly reflect the increase in intravascular signal, resulting in a reported global myocardial T2/T2* increase of 10–18% [9]. With ischemia, the effect is exactly the opposite, with an increase in de-oxygenated hemoglobin and a consequent decrease in T2/T2* values in that myocardial segment. These effects are highly dependent on the field strength, and at 3 Tesla the sensitivity to changes can triple [32].

Initial attempts at measuring changes in the content of de-oxygenated hemoglobin in the heart with T2 imaging used either T2-weighted turbo spin echo techniques or direct T2 measurements based on spin echo methods [33]. However, these techniques have been hampered by the long acquisition times, susceptibility artifacts and limitations such as residual blood signal, motion, heart rate dependency, irregular rhythms or surface coil positioning. To circumvent these problems, T2 maps based on T2-prepared steady-state free precession imaging were developed with further improvements in motion correction or free-breathing acquisitions [34–36]. These sequences provide practical T2 maps that can be acquired in a single breath hold or during free breathing, and provide accurate and reproducible T2 values of the myocardium [37]. Most of the clinical applications of these newer T2 mapping approaches have been directed to edema imaging, with BOLD T2 imaging having been performed using signal intensity evaluation but not direct T2 measurements [31]. While direct T2* mapping has been shown to differentiate vasodilatory states from rest, as well as ischemic from normal myocardial segments, despite the increased sensitivity at 3T, susceptibility artifacts have somewhat limited the use of T2* mapping for BOLD imaging [12].

Clinical applications

Clinical demonstrations of direct T2 maps for stress imaging have not yet been fully developed but initial work has validated their use with the purpose of measuring myocardial oxygenation [6]. Recently, a protocol was devised to use a commercially available T2 mapping sequence in a routine 3 Tesla CMR exam for ischemia evaluation [19]. Given the previous evidence of the sensitivity of T2 mapping to detect changes induced by vasodilation, we hypothesized that we could predict the effectiveness of vasodilatory stimulus using dipyridamole before the injection of contrast for first-pass perfusion. For comparison, we used the identification of splenic switch-off as a marker of the effectiveness of the pharmacological stimulus as published by Manisty et al. [38]. In short, visual assessment of spleen perfusion allowed the identification of patients who were understressed and did not demonstrate qualitative attenuation of signal during stress versus rest. While this allows for post-exam assessment of pharmacological inadequate stimulus, it only provides this information after contrast has been injected and the stress stimulus has already been terminated, not allowing any action for protocol optimization such as increasing the dose of adenosine or dipyridamole before first-pass perfusion [39].

The stress protocol used for this study is shown in Figure 2. Given the intrinsic lack of contrast needed to detect vasodilation changes with T2 mapping, any action needed to adjust stress induction could be taken before injection of contrast. The T2 map sequence used for the study is shown in Figure 3, and is used to acquire one short-axis slice with a single breath-hold using three T2-preparation times, non-rigid motion correction and generation of an immediate in-line pixel-wise T2 map based on automated curve fitting. This protocol was applied in fifty patients and we found that there was a significant inverse correlation between changes in myocardial T2 values and splenic signal intensity.
A change of more than 2.5% or 1.0 ms in the resting T2 value after stress had a sensitivity of 81.4% and specificity of 100% to detect patients with visually positive spleen switch-off. An example of a patient with positive and negative effective vasodilation compared to the splenic switch-off sign is shown in Figure 4. The mean difference in T2 values before and after stress of +10.6% found in our study is in line with previous papers that used T2* mapping and showed similar degrees of changes after vasodilatory stimulus [9, 11, 14, 15]. In comparison to changes seen in other non-ischemic myocardial segments using T2 signal intensity comparisons at 3 Tesla, the differences were similar to remote segments in CAD patients (9.95 ± 1.1%) but lower than in normal volunteers (17.0 ± 1.1%) possibly reflecting an already subclinical impaired vascular function in patients with risk factors versus normals [39].

Future studies
While this study did not include a specific evaluation of T2 map changes with stress in ischemic versus non-ischemic segments, we believe that future studies using stress T2 mapping could reproduce the positive findings described previously of a comparison of T2 signal intensity pre- and post-stress. Given the practical and rather simple application of stress-mapping in routine protocols, even with current single slice 2D acquisitions it would be feasible to acquire 3 short-axis slices and one long-axis slice of the left ventricle as is done in perfusion imaging during stress in a short period of time, even in addition to traditional first-pass contrast images. Improvements in 3D acquisitions [40, 41] could result in whole-heart T2 coverage with acceptable acquisition times and then allow for evaluation of all myocardial segments improving spatial coverage while keeping high-resolution images and minimizing heart rate dependency. Finally, while ischemia detection has always been associated with stress induction, it has been shown that BOLD imaging can differentiate myocardial ischemic segments versus normal segments even at rest using systolic and diastolic ratios determined by signal intensity values [42]. More recently, Arnold et al. also demonstrated that the use of signal intensity BOLD images could be used to discriminate myocardial segments perfused by anatomically significantly obstructed coronary arteries without the need for stress [43]. Neither study assessed absolute quantification of T2 or T2* values so it remains to be proven if direct parametric mapping can also be helpful in identifying ischemia even at rest.

Conclusions
The use of currently available parametric maps after vasodilatory stress allows for the potential detection of
ischemic and infarcted myocardium segments, assessment of the effectiveness of the pharmacological stress induction and opens the possibility of studying different parameters of myocardial supply and demand with high accuracy. With the added advantage of not needing contrast agents, stress-mapping might also be useful for patients with impaired kidney function or who cannot receive these agents for other reasons. Given the previously demonstrated discrepancies between myocardial flow and true myocardial ischemia [8], stress imaging using parametric maps may also offer a new tool on the CMR armamentarium, complementary to current sequences with addition of new physiological information.

References

22 Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlín LE, Greiser A, Neubauer S, Robson MD. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12:69.

23 Chow K, Flewitt JA, Green JD, Pagano J, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T1 mapping. Magn Reson Med. 2013:n/a-n/a.

Contact

Juliano L. Fernandes, M.D., Ph.D., MBA
Radiologia Clinica de Campinas
Av Jose de Souza Campos 840
Campinas – SP – Brazil – 13092-123
jlaraf@terra.com.br
Combined 18F-FDG PET/MR for Enhanced Imaging of Active Cardiac Sarcoidosis

Nicolas A. Karakatsanis, Ph.D., MEng; Marc R. Dweck, M.D., Ph.D.; Ronan Abgral, M.D., Ph.D.; Maria Giovanna Trivieri, M.D., Ph.D.; Philip M. Robson, Ph.D.; Jason C. Kovacic, M.D., Ph.D.; Zahi A. Fayad, Ph.D.

Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Introduction

Sarcoidosis is a multisystem disease characterized by granuloma formation, inflammation and fibrosis most commonly affecting the lungs and mediastinal lymph nodes [1]. Cardiac involvement is under-diagnosed but is the leading cause of death amongst patients with sarcoidosis [2–6]. Early intervention with steroids appears to improve prognosis [7], making the accurate and early diagnosis of subclinical but active cardiac sarcoidosis an important clinical goal. Unfortunately establishing this important diagnosis remains a major clinical challenge [8, 9].

Cardiac magnetic resonance (MR) imaging with late gadolinium enhancement (LGE) has recently been introduced for visualizing the pattern of myocardial injury due to cardiac sarcoidosis [10, 11]. However, LGE cannot differentiate between active disease and old chronic scarring, thus limiting the specificity of CMR-based active sarcoidosis assessments. On the other hand, positron emission tomography (PET) imaging with 18F-Fludeoxyglucose (18F-FDG), has recently been used to identify regions of increased myocardial inflammation in patients with active cardiac sarcoidosis [12–14]. However, glucose is the predominant source of energy consumed by the myocardium, and high non-specific physiological uptake of 18F-FDG can often lead to false positive identification of active myocardial disease. Although dietary restrictions in the 12 hours prior to PET imaging may switch the heart from glucose to free-fatty acid metabolism and effectively suppress physiological 18F-FDG uptake in the myocardium, this strategy is not always successful [14–16].

Recently, hybrid PET/MR systems have become clinically available [17–19]. The simultaneous hybrid PET/MR Biograph mMR system (Siemens Healthcare, Erlangen, Germany) combines a sensitive PET scanner with a 3T MR system to enable spatial co-registration of complementary imaging data from the two modalities [20]. Simultaneous acquisition of PET and MR data allows disease activity measured by PET to be precisely overlaid on the pattern of injury in the myocardium determined by MR from a single scan session [21]. Moreover, by replacing CT with MR, PET/MR is associated with a lower radiation dose, which is important, especially in chronic conditions such as cardiac sarcoidosis, where follow-up would be desirable [17].

Recent studies in our institution have investigated the use of MR/PET for evaluating cardiac disease [21, 22] including cardiac sarcoidosis by assessing the overlap between 18F-FDG PET activity and the pattern of myocardial injury on LGE MR. We have investigated the potential of combined PET/MR to differentiate between active and inactive cardiac sarcoid as well as identifying false-positive PET indications, due to inadequate physiological 18F-FDG myocardial uptake suppression [22, 23].

Figure 1: From left to right: (1A, C) LGE MR images showed elevated LGE signal at the lateral and anteroseptal wall for patient 1 (62-year-old male) and patient 2 (63-year-old female) respectively. (1B, D) Matched 18F-FDG PET fused with previous LGE MR images showed high 18F-FDG uptake overlapping with the LGE pattern of injury.

1 The full prescribing information for the Fludeoxyglucose F18 injection can be found at page 37.
In this article, we present four clinical exams where initial diagnosis for active cardiac sarcoidosis was unclear when either LGE MR or 18F-FDG PET exams were evaluated independently [22, 23]. All participating subjects had a previous history of proven extra-cardiac sarcoidosis and/or clinical symptoms to suggest cardiac sarcoid involvement. Patients gave written informed consent and were screened for contra-indications before undergoing PET/MR imaging.

Dynamic PET data were acquired across a single bed position centered over the heart in list mode for a period of 90 min beginning 10 min after 5 MBq/kg 18F-FDG injection. The collected PET data were then histogrammed into a single scan time window corresponding to a delayed 40–100 min post-injection period. Subsequently the PET data were reconstructed with an iterative ordinary Poisson Ordered Subset Expectation Maximization (OP-OSEM) algorithm using 3 iterations, 21 subsets and a resolution modeling method optimized for the Biograph mMR system. An MR-based attenuation correction method was employed for the PET data based on 4-tissue class segmentation of a standard breath-hold 3D Dixon VIBE MR sequence. Attenuation from the body transmit coil and spine array, but not from the flexible chest array, were included in the attenuation map.

Cardiac MRI, performed simultaneously with the dynamic PET acquisition, included

i) TrueFISP cine images, acquired in the long-axis (2-chamber, 4-chamber) of the left ventricle, followed by

ii) a complete short-axis stack for assessment of cardiac volume and function, and

iii) inversion recovery-prepared spoiled gradient echo late gadolinium enhanced imaging, 10–15 minutes post injection of 0.2 mmol/kg Multi Hance (Bracco imaging, Milan, Italy) in short- and long-axis views [24]. Inversion times were optimized to null normal myocardium with images repeated in two separate phase-encoding directions to exclude artifact.

Enhancing cardiac sarcoid diagnosis with simultaneous PET/MR imaging

In patients 1 and 2, elevated 18F-FDG uptake (at later times >60 min post tracer injection) co-localized with the pattern of late gadolinium enhancement observed on MRI (Fig. 1). The coincidental observation of both increased 18F-FDG-PET activity and evidence of myocardial injury on late gadolinium enhancement strongly suggests the presence of active cardiac sarcoidosis. Target-to-background (TBR) values were calculated as mean standard uptake values (SUV) in regions-of-interest (ROI) drawn over the area of myocardial injury divided by the mean blood pool SUV value in the left ventricular cavity. Mean 18F-FDG TBR in areas of myocardial injury were 2.2 (patient 1) and 2.0 (patient 2).

Conversely, overlap of PET and LGE was not observed in patients 3 and 4 (Fig. 2). In patient 3 transmural scarring in a coronary distribution affecting the anteroseptum was observed on LGE MR but with no evidence of increased 18F-FDG PET uptake in this region. This finding was felt to be consistent with a chronic and silent myocardial infarction. By contrast, patient 4 demonstrated avid and diffuse 18F-FDG uptake throughout the entire left ventricular myocardium in the absence of any evidence of myocardial injury on LGE MR. Given that cardiac sarcoidosis is a focal disease process this was felt likely to represent failed suppression of the physiological 18F-FDG uptake [25]. This hypothesis was supported by the very high TBR values (6.3 60–90 min post injection) in this patient compared to subjects 1 and 2. However, more evidence is needed to be able to differentiate the true- from the false-positive cardiac sarcoid 18F-FDG assessments in the absence of positive LGE MR signal.

Future prospects for cardiac PET/MR imaging

This preliminary study has demonstrated the clinical potential of simultaneous PET/MR imaging in the evaluation of active cardiac sarcoidosis. PET and MR images can be accurately aligned allowing a diagnosis of active cardiac sarcoidosis to be made with confidence when increased

Figure 2: (2A, B) Patient 3 (50-year-old female), short-axis LGE MR showed transmural LGE on the anteroseptum, while fused PET/MR images demonstrated absence of high 18F-FDG uptake on the same region. (2C, D) Patient 4 (42-year-old male) LGE MR showed absence of LGE on the myocardial wall. Fused PET/MR images indicated diffused intense 18F-FDG uptake.
18F-FDG uptake co-localizes with the pattern of injury on late gadolinium enhancement MRI. Moreover this approach can help differentiate this pattern from non-active cardiac sarcoid LGE signal or false positive 18F-FDG uptake due to failed myocardial suppression.

References

The recommended dose:
- for adults is 5 to 10 mCi (185 to 370 MBq), in the oncology setting (2.2).
- for pediatric patients is 2.6 mCi in the neurology setting (2.2).

Initiate imaging within 40 minutes following drug injection; acquire static emission images 30 to 100 minutes from time of injection (2).

DOSAGE FORMS AND STRENGTHS

Fludeoxyglucose F 18 Injection is available as a sterile, single-use vial containing 0.7 to 740 MBq/mL. The optimal dose adjustment on the basis of body size or weight has not been determined (11.2).

US IN SPECIFIC POPULATIONS

Pregnancy Category C: No human or animal data. Consider alternative diagnostic use only if clearly needed (13).

Nursing Mothers: Use alternatives to breast feeding (e.g., stored breast milk or infant formula) for at least 10 half-lives of the drug's injection (13).

Pediatric Use: Safety and effectiveness in pediatric patients have not been established (13).

Use in Special Populations

Radiation absorbed dose
- The estimated human absorbed radiation doses (rem/mCi) to a newborn (3.4 kg), 1-year old (9.8 kg), 5-year old (19 kg), 10-year old (32 kg), 15-year old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human data and using the data published by the International Commission on Radiation Protection for Fludeoxyglucose F 18 Injection. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These variations in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.

<table>
<thead>
<tr>
<th>Organ</th>
<th>Newborn (3.4 kg)</th>
<th>1-year old (9.8 kg)</th>
<th>5-year old (19 kg)</th>
<th>10-year old (32 kg)</th>
<th>15-year old (57 kg)</th>
<th>Adult (70 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder</td>
<td>4.1</td>
<td>1.2</td>
<td>0.92</td>
<td>0.60</td>
<td>0.46</td>
<td>0.32</td>
</tr>
<tr>
<td>Heart</td>
<td>2.6</td>
<td>1.2</td>
<td>0.70</td>
<td>0.44</td>
<td>0.29</td>
<td>0.22</td>
</tr>
<tr>
<td>Pancreas</td>
<td>2.2</td>
<td>1.0</td>
<td>0.33</td>
<td>0.25</td>
<td>0.13</td>
<td>0.096</td>
</tr>
<tr>
<td>Spleen</td>
<td>2.2</td>
<td>0.84</td>
<td>0.29</td>
<td>0.29</td>
<td>0.19</td>
<td>0.16</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.96</td>
<td>0.38</td>
<td>0.20</td>
<td>0.13</td>
<td>0.092</td>
<td>0.084</td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.81</td>
<td>0.34</td>
<td>0.19</td>
<td>0.13</td>
<td>0.089</td>
<td>0.076</td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.80</td>
<td>0.19</td>
<td>0.11</td>
<td>0.058</td>
<td>0.053</td>
<td></td>
</tr>
<tr>
<td>Uterus</td>
<td>0.79</td>
<td>0.35</td>
<td>0.19</td>
<td>0.12</td>
<td>0.076</td>
<td>0.062</td>
</tr>
<tr>
<td>LLI wall *</td>
<td>0.69</td>
<td>0.28</td>
<td>0.15</td>
<td>0.097</td>
<td>0.060</td>
<td>0.051</td>
</tr>
<tr>
<td>Liver</td>
<td>0.69</td>
<td>0.31</td>
<td>0.17</td>
<td>0.11</td>
<td>0.076</td>
<td>0.058</td>
</tr>
<tr>
<td>Gall bladder wall</td>
<td>0.69</td>
<td>0.26</td>
<td>0.14</td>
<td>0.093</td>
<td>0.059</td>
<td>0.049</td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.68</td>
<td>0.29</td>
<td>0.15</td>
<td>0.096</td>
<td>0.060</td>
<td>0.047</td>
</tr>
<tr>
<td>LLI wall †</td>
<td>0.67</td>
<td>0.27</td>
<td>0.15</td>
<td>0.090</td>
<td>0.057</td>
<td>0.046</td>
</tr>
<tr>
<td>Stomach wall</td>
<td>0.65</td>
<td>0.27</td>
<td>0.14</td>
<td>0.089</td>
<td>0.057</td>
<td>0.047</td>
</tr>
<tr>
<td>Adrenalis</td>
<td>0.65</td>
<td>0.28</td>
<td>0.15</td>
<td>0.095</td>
<td>0.061</td>
<td>0.048</td>
</tr>
<tr>
<td>Testes</td>
<td>0.64</td>
<td>0.27</td>
<td>0.14</td>
<td>0.085</td>
<td>0.052</td>
<td>0.043</td>
</tr>
<tr>
<td>Red marrow</td>
<td>0.62</td>
<td>0.26</td>
<td>0.14</td>
<td>0.089</td>
<td>0.057</td>
<td>0.047</td>
</tr>
<tr>
<td>Thymus</td>
<td>0.61</td>
<td>0.26</td>
<td>0.14</td>
<td>0.086</td>
<td>0.056</td>
<td>0.044</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.61</td>
<td>0.26</td>
<td>0.13</td>
<td>0.080</td>
<td>0.049</td>
<td>0.039</td>
</tr>
<tr>
<td>Musculoskeletal wall</td>
<td>0.58</td>
<td>0.23</td>
<td>0.12</td>
<td>0.079</td>
<td>0.052</td>
<td>0.044</td>
</tr>
<tr>
<td>Bone surface</td>
<td>0.57</td>
<td>0.24</td>
<td>0.12</td>
<td>0.079</td>
<td>0.052</td>
<td>0.044</td>
</tr>
<tr>
<td>Breast</td>
<td>0.54</td>
<td>0.22</td>
<td>0.11</td>
<td>0.068</td>
<td>0.043</td>
<td>0.034</td>
</tr>
<tr>
<td>Skin</td>
<td>0.49</td>
<td>0.20</td>
<td>0.10</td>
<td>0.060</td>
<td>0.037</td>
<td>0.030</td>
</tr>
<tr>
<td>Brain</td>
<td>0.29</td>
<td>0.13</td>
<td>0.09</td>
<td>0.078</td>
<td>0.072</td>
<td>0.070</td>
</tr>
<tr>
<td>Other tissues</td>
<td>0.59</td>
<td>0.25</td>
<td>0.13</td>
<td>0.083</td>
<td>0.052</td>
<td>0.042</td>
</tr>
</tbody>
</table>

* MIRDOS 2 software was used to calculate the radiation absorbed dose. Assumptions on the biodistribution based on data from Gallagher et al. and Jones et al.
† The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.
L1 = lower large intestine; L1L = upper large intestine
Fludeoxyglucose F 18 Injection, USP

2.5 Radiation Safety – Drug Handling

• Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F 18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons.

• Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides.

• Calculate the final dose of Fludeoxyglucose F 18 Injection used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed.

2.6 Drug Preparation and Administration

Calculate the necessary volume to administer based on calibration time and dose. Aseptically withdraw Fludeoxyglucose F 18 Injection from its container. Inspect Fludeoxyglucose F 18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit.

Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations. Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS.

2.7 Imaging Guidelines

Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration. Acquire static emission images 30 to 100 minutes from the time of injection.

3 DOSE FORMS AND STRENGTHS

Multiple-dose 30 ml and 50 ml vial containing 0.74 to 7.40 GBq (20 to 200 mCi/mL) of Fludeoxyglucose F 18 Injection and 4.5 mg of sodium chloride with 0.1 to 0.5% w/w ethanol as a stabilizer (approximately 15 to 50 mL volume) for intravenous administration.

6 ADVERSE REACTIONS

Hypersensitivity reactions with pruritus, edema and rash have been reported in the post-marketing setting. Have emergency resuscitation equipment and personnel immediately available.

7 DRUG INTERACTIONS

The possibility of interactions of Fludeoxyglucose F 18 Injection with other drugs taken by patients undergoing PET imaging has not been studied.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category C

Animal reproduction studies have not been conducted with Fludeoxyglucose F 18 Injection. It is not known whether Fludeoxyglucose F 18 Injection can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. Consider alternative diagnostic tests in a pregnant woman; administer Fludeoxyglucose F 18 Injection only if clearly needed.

8.3 Nursing Mothers

It is not known whether Fludeoxyglucose F 18 Injection is excreted in human milk. Consider alternative diagnostic tests in women who are breast-feeding. Use alternatives to breast-feeding (e.g., stored breast milk or infant formula) for at least 10 half-lives of radioactivity decay, if Fludeoxyglucose F 18 Injection is administered to a woman who is breast-feeding.

8.4 Pediatric Use

The safety and effectiveness of Fludeoxyglucose F 18 Injection in pediatric patients with epilepsy is established on the basis of studies in adult and pediatric patients. In pediatric patients with epilepsy, the recommended dose is 2.6 mg/kg. The optimal dose adjustment on the basis of body size or weight has not been determined. In the oncology or neurology setting, suboptimal imaging may occur in patients with inadequately regulated blood glucose levels. In these patients, consider medical therapy and laboratory testing to assure at least two days of normoglycemia prior to Fludeoxyglucose F 18 Injection administration.

11 DESCRIPTION

11.1 Chemical Characteristics

Fludeoxyglucose F 18 Injection is a positron-emitting radiopharmaceutical that is used for diagnostic purposes in conjunction with positron emission tomography (PET) imaging. The active ingredient 2-deoxy-2-[18F]fluoro-D-glucose has the molecular formula of C18H18F18O9 with a molecular weight of 811.16, and has the following chemical structure:

Fludeoxyglucose F 18 Injection is provided as a ready-to-use sterile, pyrogen-free, clear, colorless solution. Each mL contains between 0.76 to 7.40 GBq (20 to 200 mCi) of 2-deoxy-2-[18F]fluoro-D-glucose at the EOS, 4.5 mg of sodium chloride and 0.1 to 0.5% w/w ethanol as a stabilizer. The pH of the solution is between 4.5 and 7.5. The solution is packaged in a multiple-dose glass vial and does not contain any preservative.

11.2 Physical Characteristics

Fluorine F 18 decays by emitting positron to Oxygen O 16 (stable) and has a physical half-life of 109.7 minutes. The principal photons useful for imaging are the dual 511 keV gamma photons, that are produced and emitted simultaneously in opposite direction when the positron interacts with an electron (Table 2).

Table 2. Pricipal Radiation Emission Data for Fluorine F18

<table>
<thead>
<tr>
<th>Radiation/Emission</th>
<th>% Per Disintegration</th>
<th>Mean Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positron (b+)</td>
<td>96.73</td>
<td>249.8 keV</td>
</tr>
</tbody>
</table>

Fluorine F 18 is produced by positron annihilation From: Kocher, D.C. Radioactive Decay Tables DOE/TIC-I 1026, 89 (1981)

The principal gamma ray constant (point source air kerma coefficient) for [18F]F is 1.78 mR/mCi (0.0535 nC/µCi) at 1 cm. The half-value layer (HVL) for the 511 keV photoelectrons is 1.0 mm Pb. The range of attenuation coefficients for this radionuclide as a function of lead shield thickness is shown in Table 3. For example, the interpolation of an 8 mm thickness of Pb, with a coefficient of attenuation of 0.25, will decrease the external radiation by 75%.

Table 3. Radiation attenuation of 511 keV Photons by lead (90% shielding)

<table>
<thead>
<tr>
<th>Shield thickness (mm)</th>
<th>Coefficient of attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>0.50</td>
</tr>
<tr>
<td>8</td>
<td>0.25</td>
</tr>
<tr>
<td>12</td>
<td>0.10</td>
</tr>
<tr>
<td>16</td>
<td>0.03</td>
</tr>
<tr>
<td>20</td>
<td>0.01</td>
</tr>
<tr>
<td>25</td>
<td>0.001</td>
</tr>
</tbody>
</table>

For use in correcting for physical decay of this radionuclide, the fractions remaining at selected intervals after calibration are shown in Table 4.

Table 4. Physical Decay Chart for Fluorine F18

<table>
<thead>
<tr>
<th>Minutes</th>
<th>F18 Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
</tr>
<tr>
<td>20</td>
<td>0.999</td>
</tr>
<tr>
<td>30</td>
<td>0.926</td>
</tr>
<tr>
<td>60</td>
<td>0.683</td>
</tr>
<tr>
<td>120</td>
<td>0.500</td>
</tr>
<tr>
<td>220</td>
<td>0.250</td>
</tr>
</tbody>
</table>

*calibration time

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Fludeoxyglucose F 18 is a glucose analog that concentrates in cells that rely upon glucose as an energy source, or in cells whose dependence on glucose increases under pathophysiological conditions. Fludeoxyglucose F 18 is transported through the cell membrane by facilitated glucose transporter proteins and is phosphorylated within the cell to [18F]FDG-6-phosphate by the enzyme hexokinase. Once phosphorylated it cannot exit until it is dephosphorylated by glucose-6-phosphatase. Therefore, within a given tissue or pathophysiological process, the retention and clearance of Fludeoxyglucose F 18 reflect a balance involving glucose transporter, hexokinase and glucose-6-phosphatase activities. When allowance is made for the kinetic differences between glucose and Fluodeoxyglucose F 18 transport and phosphorylation (expressed as the "jumped constant" ratio), Fludeoxyglucose F 18 is used to assess glucose metabolism. In comparison to background activity of the specific organ or tissue type, regions of decreased or absent uptake of Fludeoxyglucose F 18 reflect the decrease or absence of glucose metabolism. Regions of increased uptake of Fludeoxyglucose F 18 reflect greater than normal rates of glucose metabolism.

12.2 Pharmacodynamics

Fludeoxyglucose F 18 Injection is rapidly distributed to all organs of the body after intravenous administration. After background clearance of Fludeoxyglucose F 18 Injection, optimal PET imaging is generally achieved between 30 to 40 minutes after administration. In cancer, the cells are generally characterized by enhanced glucose metabolism partially due to (1) an increase in activity of glucose transporters, (2) an increased rate of phosphorylation activity, (3) a reduction of phosphatase activity, or (4) a dynamic alteration in the balance among all these processes. However, glucose metabolism of cancer as reflected by Fludeoxyglucose F 18 accumulation shows considerable variability. Depending on tumor type, stage, and location, Fludeoxyglucose F 18 accumulation may be increased, normal, or decreased. Also, inflammatory cells can have the same variability of uptake of Fludeoxyglucose F 18. In the heart, under normal aerobic conditions, the myocardium meets the bulk of its energy requirements by oxidizing free fatty acids. Most of the exogenous glucose taken up by the myocyte is converted to glycogen. However, under ischemic conditions, the oxidation of free fatty acids decreases, exogenous glucose becomes the preferred myocardial substrate, glycolysis is stimulated, and glucose taken up by the myocyte is metabolized instead of being converted into glycogen. Under these conditions, phosphorylated Fludeoxyglucose F 18 accumulates in the myocyte and can be detected with PET imaging. In the brain, cells normally rely on aerobic metabolism. In epilepsy, the glucose metabolism varies. Generally, during a seizure, glucose metabolism increases. Interictally, the glucose metabolism decreases. Also, inflammatory cells can have the same variability of uptake of Fludeoxyglucose F 18.

13 Pharmacokinetics

Distribution: In four healthy male volunteers, receiving an intravenous administration of 30 seconds in duration, the arterial blood level profile for Fludeoxyglucose F 18 decays triexponentially. The effective half-life ranges of the three phases were 0.2 to 0.3 minutes, 10 to 13 minutes with a mean and standard deviation (STD) of 11.6 ± 1.1 minutes, and 80 to 95 minutes with a mean and STD of 88.4 ± 4 min. Plasma protein binding of Fludeoxyglucose F 18 has not been studied.

Metabolism: Fludeoxyglucose F 18 is transported into cells and phosphorylated to [18F]-FDG-6-phosphate at a rate proportional to the rate of glucose utilization within that tissue. [18F]-FDG-6-phosphate is then metabolized to 2-deoxy-2-[18F]fluoro-D-mannose([18F]-FDG-6-phosphate).
Fludeoxyglucose F 18 Injection may contain several impurities (e.g., 2-deoxy-2-chloro-D-glucose [CDG]). Biodegradation and metabolism of CDG are presumed to be similar to Fludeoxyglucose F 18, should be expected to result in the formation of 2-deoxy-2-chloro-6-phospho-D-glucose (CDG-6-phosphate) and 2-deoxy-2-chloro-6-phospho-D-mannose (CIDM-6-phosphate). The phosphorylated deoxyglucose compounds are dephosphorylated and the resulting compounds, FDM, CIDM, and CDG, respectively leave cells by passive diffusion. Fludeoxyglucose F 18 and related compounds are cleared from non-cardiac tissues within 3 to 24 hours after administration. Clearance from the cardiac tissue may require more than 36 hours. Fludeoxyglucose F 18 that is not involved in glucose metabolism in any tissue is then excreted in the urine.

Elimination: Fludeoxyglucose F 18 is cleared from most tissues within 24 hours and can be eliminated in the feces unchanged in the urine. The elimination phases have been identified in the review literature. Within 33 minutes, a mean of 3.9% of the administered radioactive dose was measured in the urine. The amount of radioactivity observed in the urinary bladder at two hours post-administration suggests that 20.6% (mean) of the radiolabeled dose was present in the bladder.

Special Populations: The pharmacokinetics of Fludeoxyglucose F 18 Injection have not been studied in markedly impaired, heparinically impaired, or pediatric patients. Fludeoxyglucose F 18 is eliminated through the renal system. Avoid excessive radiation exposure to this organ system and adjacent tissues. The effects of fasting, varying blood sugar levels, conditions of glucose intolerance, and diabetes mellitus on Fludeoxyglucose F 18 distribution in humans have not been ascertained (see Warnings and Precautions (5.2)).

13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
Animal studies have not been performed to evaluate the Fludeoxyglucose F 18 Injection carcinogenic potential, mutagenic potential or effects on fertility.

14 CLINICAL STUDIES
14.1 Oncology
The efficacy of Fludeoxyglucose F 18 Injection in positron emission tomography cancer imaging was demonstrated in independent studies. These studies prospectively evaluated the use of Fludeoxyglucose F 18 in patients with suspected or known malignancies, including non-smal cell lung cancer, colorectal, pancreatic, breast, thyroid, melanoma, Hodgkin’s and non-Hodgkin’s lymphoma, various types of metastatic cancer to lung, liver, bone, and axillary nodes. All these studies had at least 50 patients and used pathology as a standard of truth. The Fludeoxyglucose F 18 Injection doses in the studies ranged from 200 MBq to 740 MBq with a median dose of 470 MBq. In the studies, the diagnostic performance of Fludeoxyglucose F 18 Injection varied with the type of cancer, size of cancer, and other clinical conditions. False negative and false positive scans were observed. Negative Fludeoxyglucose F 18 Injection PET scans may not exclude the diagnosis of anatomic abnormalities. Positive Fludeoxyglucose F 18 Injection PET scans can not replace pathology to establish a diagnosis of cancer. Non-malignant conditions such as fungal infections, inflammatory processes and benign tumors may have patterns of increased glucose metabolism that may give rise to false-positive scans. The efficacy of Fludeoxyglucose F 18 Injection PET imaging in cancer screening was not studied.

14.2 Cardiology
The efficacy of Fludeoxyglucose F 18 Injection for cardiac use was demonstrated in ten independent, prospective studies of patients with coronary artery disease and chronic left ventricular systolic dysfunction who were scheduled to undergo coronary revascularization. Before revascularization, patients underwent PET imaging with Fludeoxyglucose F 18 Injection (74 MBq to 120 MBq) and perfusion imaging with other diagnostic radiopharmaceuticals. Doses of Fludeoxyglucose F 18 Injection ranged from 74 MBq to 370 MBq (2 to 10 MBq). The correlation between imaging results and the results of surgical revascularization was assessed in 1988 in a blinded manner to assess outcomes after successful revascularization to identify myocardial segments with functional recovery. Left ventricular myocardial segments were evaluated for reversible loss of systolic function if they showed Fludeoxyglucose F 18 Accumulation or reduced perfusion (ie, flow/metabolism mismatch). Conversely, myocardial segments were predicted to have irreversible loss of systolic function if they showed reductions in both Fludeoxyglucose F 18 Accumulation and perfusion (ie, necrosis). Patients with flow/metabolism mismatch in a myocardial segment may suggest that successful revascularization will restore myocardial function in that segment. However, false-positive tests occur regularly, and the decision to recommend a coronary revascularization should not be based on PET findings alone. Similarly, findings of a matched defect in a myocardial segment may suggest that myocardial function will not recover in that segment, even if it is successfully revascularized. However, false-negative tests occur regularly, and the decision to recommend against coronary revascularization, or to recommend a cardiac transplant, should not be based on PET findings alone. The reversibility of segmental dysfunction as predicted with Fludeoxyglucose F 18 PET imaging depends on successful coronary revascularization. Therefore, in patients with a low likelihood of successful revascularization, the diagnostic usefulness of PET imaging with Fludeoxyglucose F 18 Injection is more limited.

15 REFERENCES
4. ICRP Publication 53, Volume 18, No. 1-4, 1987, pages 75-76.
5. HOW SUPPLIED/STORAGE AND HANDLING
Fludeoxyglucose F 18 Injection is supplied in a multi-dose, capped 30 mL and 50 mL glass vial containing between 0.40 to 7.40 GBq/mL (10 to 200 MBq/mL) of non-carrier added 2-deoxy-2-[F-18] fluoro-D-glucose, at end of synthesis, in approximately 15 to 50 mL. The contents of each vial are sterile, pyrogen-free and preservative-free.

6. Place the Fludeoxyglucose F 18 Injection vial upright in a lead shielded container at 25°C (77°F); excursions permitted to 15-30°C (59-86°F).
7. Manufactured by: PETNET Solutions Inc.
Distributed by: PETNET Solutions Inc.
Millcreek, UT 84121

16 PATIENT COUNSELING INFORMATION
Instruct patients in procedures that increase renal clearance of radioactivity.

Encourage patients to:
• drink water or other fluids (as tolerated) in the 4 hours before their PET study.
• void as soon as the imaging study is completed and as often as possible thereafter for at least one hour.

Manufactured by: PETNET Solutions Inc.
830 Innovation Drive
Knoxville, TN 37932

Distributed by: PETNET Solutions Inc.
830 Innovation Drive
Knoxville, TN 37932

PETNET Solutions
PN002262 Rev A
March 1, 2011
Combined 18F-FDG PET/MR in the Diagnostic Work-up of Myocardial Disease

Maria Giovanna Trivieri, M.D., Ph.D.1,4; Marc R. Dweck, M.D., Ph.D.1,2; Philip M. Robson, Ph.D.1; Nicolas A. Karakatsanis, Ph.D.1; Ronan Abgral, M.D., Ph.D.1,3; Zahi A. Fayad, Ph.D.1

1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
2 British Heart Foundation / University Centre for Cardiovascular Science, University of Edinburgh, UK
3 Department of Nuclear Medicine, European University of Brittany, Centre Hospitalier Régional et Universitaire (CHRU) Brest, France
4 Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Introduction

Cardiovascular magnetic resonance (CMR) is an established modality frequently used to diagnose a variety of cardiomyopathic processes. It relies on the characteristic appearances of the myocardium on late gadolinium enhancement (LGE) images coupled with detailed morpho-functional assessment \cite{1, 2}. Positron Emission Tomography (PET) on the other hand, offers information on disease activity and as such is complementary to CMR. In the cardiovascular field, 18F-Fludeoxyglucose (FDG)1 has been employed to study inflammation in the myocardium \cite{3–5}. PET is usually coupled with computed tomography (CT) to provide anatomical and attenuation information. Consequently, assessment of data from CMR and PET, often collected on different days, must be done by image registration and is often challenging.

With the advent of hybrid PET/MR systems, we have now the unprecedented opportunity to combine the versatility of CMR with functional molecular imaging \cite{6}. The simultaneous acquisition of PET and CMR data enables accurate co-registration of complementary data within the

1 The full prescribing information for the Fludeoxyglucose F18 injection can be found on page 37.

Figure 1: Two-chamber short-axis view of the right and left ventricles showing a discrete area of LGE in the infero-lateral wall (blue arrows) (1A–B). Focal increase in FDG nearing the inferior wall of the myocardium and adjacent to the liver as seen in the PET alone (1C). Fused FDG-PET/MR images showing increased FDG signal perfectly localized to area of LGE (1D). Two-chamber short-axis cine CMR showing mild hypokinesis of the infero-lateral wall (1E). Native CMR T2 mapping (1F).
myocardium or area of LGE and allows differentiation of the signal in these areas from activity in the blood pool or surrounding tissues. Moreover, compared to PET/CT, PET/MR has the advantage of reducing the radiation exposure.

In this report, we present one clinical case where the addition of PET/MR resolved the initial uncertainty about both the etiology of the clinical presentation and the activity of the underlying disease process.

Clinical presentation

A 50-year-old man without prior medical history was hospitalized for recent onset of chest pain and shortness of breath. On arrival to the Emergency Department, he was found to have elevated cardiac biomarkers (CK and Troponin) and 1–2 mm inferior ST elevation on the ECG. Coronary angiogram was normal. Contrast CT of the chest showed no evidence of pulmonary embolism, pulmonary pathology or lymphadenopathy. A combined PET/MR study was requested to assess for wall motion abnormalities, myocardial damage and inflammation.

PET/MR imaging

Simultaneous PET and MR imaging of the heart was performed on the Biograph mMR hybrid PET/MR system (Siemens Healthcare, Erlangen, Germany) using a flexible 6-channel body arrayed-receiver coil and 6 channels of the 16-ch spine arrayed-receiver coil mounted in the scanner table. Dynamic PET data was acquired in list-mode using a 90 min bedtime, starting 10 min following administration of 5 MBq/kg of [18F]-FDG. The last 30 min were binned to produce a static image for evaluation. The MR protocol included long and short-axis cine imaging, late gadolinium enhancement (10 min following administration 0.02 mmol/kg Multihance (Bracco Diagnostics, Milan, Italy)) and native T2 mapping. Image analysis was performed on fused, co-registered static PET and CMR LGE images. In preparation for the scan, the patient was asked to follow a carbohydrate-free and high-fat diet for 24 hours, and fast for at least 12 hours prior to the study, to suppress the high physiological uptake of [18F]-FDG naturally present in the myocardium.

Findings

CMR revealed normal biventricular size. Mild hypokinesis was observed in the mid infero-lateral wall but overall systolic function was preserved (EF 60%). On LGE imaging, there was a very discrete area of subepicardial/transmural myocardial scar in the mid infero-lateral wall (Figs. 1A, B and E); this pattern was felt to be consistent with a diagnosis of myocarditis rather than myocardial infarction. When the PET data was viewed in isolation, a focal area of increased [18F]-FDG uptake was observed near the inferior wall of the myocardium, although it was adjacent to the liver and not clear that it was originating from the myocardium (Fig. 1C). After image fusion with CMR, the increased PET activity perfectly co-localized with the region of injury on LGE (Fig. 1D) allowing us to report active myocardial inflammation in that area with confidence. By contrast, no clear increase in signal was observed on the T2 mapping images in this region (Fig. 1F).

Impression

In the absence of coronary artery disease and prior medical history, our PET/MR findings were felt to be consistent with a diagnosis of active myocarditis.

Conclusion

Simultaneous acquisition of PET and MR data offers valuable and complementary clinical information. On the same scan, the pattern of injury can be carefully co-localised to disease activity providing a unique method for combining anatomical and dynamic functional imaging. With the rapid development of novel PET radiotracers and CMR techniques for imaging the function and structure of the heart, hybrid PET/MR systems have the potential to further improve diagnostic accuracy and provide insight into the variety of molecular pathways and mechanisms underlying myocardial disease in our patients.

References

Free-breathing Late Enhancement Imaging: Phase Sensitive Inversion Recovery (PSIR) with Respiratory Motion Corrected (MOCO) Averaging

Peter Kellman; Hui Xue; Michael S. Hansen
National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD, USA

Introduction
Late gadolinium enhancement (LGE) has become a gold standard in myocardial viability assessment [1, 2] providing excellent depiction of myocardial infarction (MI) and macroscopic scarring. The use of late enhancement in the diagnosis of ischemic heart disease and in guiding revascularization therapy has gained wide acceptance. More recently, late enhancement has been playing a broader role in characterizing fibrosis in non-ischemic cardiomyopathies [3,4], and in measurement of scar resulting from treatment of cardiac arrhythmias using radiofrequency ablation [5]. As the use of late enhancement imaging has matured and as the span of applications has widened, clinicians are examining late enhancement images for more subtle indication of fibrosis and the demands on image quality have grown [6].

Breath-held (BH), segmented FLASH has been the gold standard for LGE for many years [7] and is widely used with great success when patients are cooperative and can hold their breath. In instances where poor breath-holding results in ghost artifacts, single shot SSFP imaging has been used as an alternative. However, while single shot imaging mitigates ghosting artifacts, it generally has compromised spatial resolution and image quality compared to BH FLASH. Therefore, the single shot approaches are less sensitive to detection of subtle LGE and to detection of small lesions [8]. The development of PSIR LGE with respiratory motion corrected (MOCO) averaging [6, 9, 10] has led to a free-breathing (FB) approach which achieves the robustness of single shot approaches and the resolution and image quality of BH segmented FLASH. In addition to elimination of ghosting artifacts due to poor breath-holds (Fig. 1), the PSIR MOCO LGE is inherently less sensitive to arrhythmias.

In addition to being easier on the patients, free-breathing PSIR MOCO LGE eliminates pauses between BH slices and is therefore faster to acquire than a BH stack. Free-breathing, MOCO LGE greatly simplifies the clinical workflow, particularly since LGE is typically at the end of the study where patient compliance is frequently a problem. PSIR MOCO LGE has been demonstrated to improve the image quality in both pediatric [11] and adult populations [12]. It has been shown to make a significant improvement in the most vulnerable population of sick patients [12].

Segmented breath-hold

MOCO average free-breathing

Figure 1: Free-breathing, MOCO PSIR LGE images eliminate ghosting artifacts and achieve high SNR by means of respiratory motion corrected averaging [6].

1 The product is still under development and not commercially available yet. Its future availability cannot be ensured.
2 MR scanning has not been established as safe for imaging fetuses and infants less than two years of age. The responsible physician must evaluate the benefits of the MR examination compared to those of other imaging procedures.
In a study of 390 consecutive patients [12], it was concluded that: “Myocardial infarction detection and quantification are similar between MOCO-LGE and BH-LGE when BH-LGE can be acquired well, but BH-LGE quality deteriorates with patient vulnerability. Acquisition time, image quality, diagnostic confidence, and the number of successfully scanned patients are superior with MOCO-LGE, which extends LGE-based risk stratification to include patients with vulnerability confirmed by outcomes.” A number of sites have adopted PSIR MOCO LGE as their sole means of LGE imaging and combined they have been performing over 10,000 studies annually for the past several years.

Respiratory MOCO averaging can offer SNR improvements well beyond what is possible using BH FLASH by further increasing the number of averages. Therefore, with PSIR MOCO LGE, higher spatial resolution or thinner slices are achievable in clinical practice. Furthermore, PSIR MOCO LGE has been integrated with dark blood PSIR to provide improved contrast of subendocardial MI with the adjacent bright blood pool.

Free-breathing approach

Motion correction may be used to correct respiratory motion [9, 10] in the case of free-breathing acquisition, or diaphragmatic drift in the case of breath-holding. The SNR for individual single shot PSIR-SSFP images is slightly worse than segmented PSIR-FLASH due to the increase in bandwidth, despite the increase in flip angle. However, the SNR of single shot PSIR-SSFP may be significantly improved by averaging multiple repeated measurements (Fig. 2).

Typically, using 8 PSIR images acquired in 16 heartbeats provides an SNR comparable or better than the FLASH protocol for approximately the same duration and may be extended to a larger number of averages since the acquisition is not breath-held. Parallel imaging at higher acceleration factors may be used to reduce the imaging duration in diastole to achieve higher spatial resolution or reduce motion blur at higher heart rates. Use of non-rigid motion correction provides correction over the full FOV in a fully automated fashion. Selective averaging may be used to discard images that do not meet similarity criteria due to through plane motion [10]. This retrospective image based navigator strategy is robust and simple to use, thereby eliminating the complexity and unreliability of prospective navigators.

Key points/implications:
- Free-breathing imaging is easier for the patient
- Improves clinical workflow
- Free-breathing imaging reduces artifacts
- Improves diagnostic quality
- Is highly effective for the most vulnerable population

![Figure 2: Respiratory motion corrected averaging strategy using accelerated single shot imaging to mitigate artifacts and motion corrected averaging to increase SNR.](image-url)
Imaging protocols

PSIR MOCO LGE has been integrated with a number of imaging protocols to include SSFP, FLASH, and multi-echo GRE for water fat separated LGE, and dark blood (DB) PSIR LGE (Fig. 3). Typical parameters for these protocols are listed in Table 1. Additionally, early gadolinium enhancement (EGE) protocols use reduced averaging for more rapid multi-slice coverage, and higher spatial resolution protocols (e.g. 256 x 224 or 320 x 244) use higher parallel imaging acceleration (PAT) factors and increased averaging.

PSIR motion corrected averaging

Non-rigid image registration is used to correct respiratory motion between repeated measurements acquired during normal free-breathing PSIR LGE imaging [6, 9, 10]. The motion correction (MOCO) is done independently for the IR and proton density (PD) images and the MOCO averaged complex images are co-registered prior to the PSIR demodulation step (Fig. 4, current implementation). The non-rigid image registration corrects in-plane motion and through-plane motion is dealt with by discarding 50% of the acquired measurements which are most dissimilar. The selection of the reference frame used for image registration as well as which frames to be discarded is based on the similarity of frames as estimated from a global mean square difference metric [10]. In this way, the retrospective image-based strategy averages the most frequent respiratory phase which is typically at end-expiration. The co-registered MOCO PD image is used for both PSIR demodulation, which preserves the sign of the IR signal by removing the background phase, as well as for correcting the surface coil intensity roll-off (Fig. 5). To improve the reliability of IR/PD co-registration which is critical for both PSIR demodulation and surface coil intensity correction, a volume preserving non-rigid co-registration is used to deal with the challenge of different contrasts between IR and PD images.

In dark blood imaging protocols SNR is typically lower due to T2 weighting and more averages are needed compared to the bright blood PSIR MOCO protocol. Likewise, for higher spatial resolution with higher PAT factors and smaller voxels, the loss in SNR in raw images may be compensated for by increased averaging.

Implementation

The PSIR MOCO implementation has evolved over the last several years and has achieved high quality and reliability used at a large number of sites in their clinical workflow. Initial off-line implementations [9, 10] were quickly moved to the scanner as works-in-progress (WIP) packages as part...
of co-development between NIH and Siemens under a cooperative research and development agreement (CRADA). Initial WIPs began in 2007 with WIP 373 (syngo MR B13A) for MAGNETOM Avanto and Espree, and were re-released with various improvements over the ensuing years.

Initial implementations applied respiratory MOCO and averaging directly to the individual single shot SSFP images, and significant through plane motion was dealt with by discarding frames as described above. Subsequent development applied MOCO averaging independently to the IR and PD, and performed the PSIR between IR and PD after motion corrected averaging. This mitigated artifacts arising due to respiratory motion between IR and PD. Early versions would output a number of intermediate series to include the raw images, MOCO images, as well the averages. As the development matured, the final versions output only the MOCO average.

A recent development has been the implementation of the PSIR MOCO reconstruction using the Gadgetron image reconstruction framework [13]. The Gadgetron framework provides increased speed and ‘on-the-fly’ reconstruction for multi-slice acquisitions. On-the-fly reconstruction immediately starts the computation when the image acquisition of the first slice is completed. For a scan covering multiple slices, this scheme allows image display during the acquisition of a stack of slices. Gadgetron software may be installed on the syngo MR E11 platforms (1.5T MAGNETOM Aera, 3T MAGNETOM Skyra and Prisma) to run on the scanner’s image reconstruction computer (MARS) or may be run on an external computer connected over the network (currently a C2P with NIH research collaboration partners). Using on-the-fly reconstruction, the time to complete the full stack of slices (9 slices/8 measurements) is approximately 6 or 8 seconds after completion of the acquisition, when performed on a 24 core external Linux PC or 16 core MARS, respectively. For on-the-fly reconstruction, all measurements for a given slice are acquired consecutively (inner loop).
PSIR MOCO LGE

Free-breathing PSIR MOCO LGE protocols are now widely used at a number of clinical research sites. At many of these sites, the free-breathing protocol is used exclusively since it saves time and provides excellent quality. Examples of late enhancement for a wide range of patterns (Fig. 6) in both ischemic and non-ischemic heart disease illustrate that PSIR MOCO provides excellent image quality and high spatial resolution to detect small focal enhancement as well as more subtle enhancement.

The typical acquisition of a SAX stack of 9-slices (Fig. 7) is acquired in 9 slices × 8 measurements × 2 RR = 144 heart beats = 2:24 min at 60 bpm. The reconstruction is performed ‘on-the-fly’ and is completed within 10 seconds of the end of scan. Long axis views may be prescribed individually or as multi-slice. When prescribing long axis views off of free-breathing SAX images, the long axis may be at a different respiratory position and possibly not optimal. Some sites find it simpler to prescribe a parallel stack of 3 long axis slices for each view (Fig. 8) to ensure acquisition of the best position.

![Figure 6: Examples of free-breathing PSIR MOCO LGE images illustrating the variety of late enhancement patterns: (6A) sub-endocardial chronic MI, (6B) transmural chronic MI, (6C) small focal scar, (6D) acute MI with dark core due to microvascular obstruction (MVO), (6E) MI with thrombus, (6F) heterogeneous focal enhancement in a patient with HCM, (6G) mid-wall enhancement in patient with myocarditis, (6H) sub-epicardial enhancement in patient with myocarditis, and (6I) sub-endocardial fibrosis in patient with amyloidosis.](image)

![Figure 7: Examples of free-breathing acquisition of stacks of 9 short axis slices using PSIR MOCO LGE acquired and reconstructed on-the-fly in approximately 2.5 min, depending on heart rate.](image)

Reprinted from MAGNETOM Flash (66) 3/2016
The PSIR MOCO protocol most frequently used is the SSFP based protocol. A FLASH based protocol has also been tested, and is beneficial in situations with large off-resonance variations that are difficult to shim. There is a reduction in SNR that may be compensated by increased averaging. A comparison of SSFP and FLASH protocols at 3T is shown in Fig. 9 using the same averaging (protocols in Table 1).

Early enhancement imaging

Early gadolinium enhancement (EGE) during the phase between 1–5 minutes following gadolinium administration is often more sensitive to detection of edema, thrombus, or microvascular obstruction (MVO). MVO may be less apparent for LGE when the gadolinium may reach the MI core. Furthermore, in the case of acute MI, the early enhancement may show the area at risk since the edematous tissue will experience a more rapid early enhancement than the central core. Similarly the edematous region in acute myocarditis is more conspicuous in early phase.

The free-breathing PSIR MOCO LGE protocol may be used for EGE without tiring the patient. The EGE may use the same LGE protocol, or may use a reduced number of averages, e.g. 4, in order that a full SAX stack can be acquired in just over minute, in cases where better time resolution is desired.

Dark Blood PSIR LGE

Late-enhancement imaging typically achieves excellent contrast between infarcted and normal myocardium. However, the contrast between the MI and the blood pool is frequently suboptimal. A large fraction of infarctions caused by coronary artery disease are sub-endocardial and thus adjacent to the blood pool. The contrast between the blood and MI in the inversion recovery (IR) image depends on variables such as contrast agent dosage, time from gadolinium administration, clearance rate, and imaging parameters. Blood velocity may also have a role in the contrast, even though non-slice-selective IR is used. Therefore, as a result of mechanisms that are not fully characterized or controlled, it is not infrequent that sub-endocardial MIs are difficult to detect or clearly delineate.

A dark blood (DB) LGE may be achieved by combining a T2 preparation [14–16] with IR. In these schemes, the myocardial signal is reduced relative to the blood signal thereby reducing the inversion times to null the myocardium. In this way, it is possible to null both the myocardium and the blood at the same time. The order of the T2 and IR preparations may be applied as T2-IR [16] or IR-T2 [14]. Both of these previously reported schemes used a FLASH readout. We combined an IR-T2 with a single shot SSFP readout and respiratory motion corrected averaging to achieve the acceptable SNR while maintaining the desired spatial and temporal resolution. In this manner, imaging is conducted free-breathing which has benefits for image quality, patient comfort, and clinical workflow. Furthermore, by using a PSIR reconstruction [17] the blood signal may be made darker than the myocardium (i.e. negative signal values) thereby providing contrast between the blood and both the MI and remote myocardium [15].
Dark blood LGE schemes provide contrast between the MI and the blood pool at the expense of SNR. However, the SNR cost of the proposed DB may be recovered by increased averaging. The DB PSIR MOCO LGE protocol in Table 1 achieves comparable contrast-to-noise ratio (CNR) between the MI and myocardium as the conventional bright blood protocol.

Free-breathing, dark blood PSIR LGE imaging has been demonstrated to improve the visualization of subendocardial MI and fibrosis in cases with low contrast with adjacent blood pool (Fig. 10). The proposed method also improves visualization of thin walled fibrous structures such as atrial walls and valves, as well as papillary muscles.

Fat water separated late enhancement

Lipomatous metaplasia is prevalent in chronic myocardial infarction (MI) and other nonischemic cardiomyopathies. Using conventional late enhancement imaging, it is difficult to discriminate between fibrosis and intramyocardial fat since both have low T1 and appear bright. Furthermore, the presence of fat may create image artifacts.

![Figure 10: Examples of bright blood (left) and dark blood (DB) (right) PSIR MOCO LGE illustrating improved contrast between subendocardial MI and blood pool. The areas of scar indicated by LGE are more conspicuous on the DB PSIR images (see arrows) and in some cases might have been missed entirely in the bright blood PSIR images.](image)

![Figure 11: Patient with chronic MI in anteroseptal region with lipomatous metaplasia seen in fat-water separated PSIR MOCO LGE.](image)

![Figure 12: Free-breathing, PSIR MOCO LGE in patient with chronic MI in atrial fibrillation (shown at SCMR 2014 Annual Scientific Meeting, Real-time imaging: in case of atrial fibrillation, Kellman P).](image)
artifacts due to the chemical shift of fat or the bright epicardial fat signal may obscure the sub-epicardium. Using fat-water separated late-enhancement imaging it is possible to distinguish the fibrosis from fat with improved sensitivity and to avoid erroneous tissue classification [19]. Detecting the presence of fibrofatty infiltration or other intramyocardial fat may have diagnostic value. The presence of intramyocardial fat may form a substrate for arrhythmias due to the lower electrical conductivity of fat. It has been shown that fibrofatty infiltration of the myocardium is associated with sudden death, and therefore noninvasive detection could have prognostic value. Fat water separated imaging may be performed free-breathing [20] with multi-echo PSIR MOCO LGE (Table 1). An example of lipomatous metaplasia in chronic MI is shown in Figure 11. It is also used to improve visualization of pericardial disease and in general mass characterization.

Insensitive to arrhythmias

The free-breathing PSIR MOCO LGE imaging based on single shot imaging is inherently insensitive to arrhythmias since it is free from ghosting artifacts experienced with breath-held segmented acquisitions. In patients with arrhythmias during scanning, there may be some variation in the cardiac phase of repeated measurements depending on the precise nature of the variation. It is possible to retrospectively discard heart beats outside of specified criteria, however in practice the MOCO average has been found to be relatively insensitive to a large variation in RR intervals and is even robust in subjects with atrial fibrillation (Fig. 12). Furthermore, some patients experience arrhythmias that are brought on or worsened by breath-holding, and are in sinus rhythm during normal free-breathing.

Discussion

The free-breathing approach to LGE using PSIR MOCO performs reliably with excellent image quality. The image is often better than breath-held LGE in the most vulnerable population that cannot breath-hold [12] and for pediatric subjects [11]. The paradigm shift to free-breathing CMR has benefits to the clinical workflow in terms of speed, ease of use, and patient comfort. A number of other free-breathing protocols that incorporate retrospective MOCO have been recently developed and allow for a complete free-breathing CMR study to include real-time cine function [21, 22], T2-SSFP [23], T2* mapping [24], and myocardial perfusion mapping [25]. These afford a significant reduction in overall exam time when combined. The PSIR MOCO LGE has been adopted at a number of sites as the new standard and is widely used.

Acknowledgements

We would like to acknowledge our colleagues at Siemens, in particular Xiaoming Bi and Randall Kroecker, for their role in development of the PSIR MOCO LGE WIP, and to our numerous clinical collaborators for their insights and clinical examples: Andrew E. Arai, W. Patricia Bandettini, Erik B. Schelbert, James C. Moon, Marianna Fontana, Martin Ugander, Patricia Feuchter, Cavan McGurk, Sofie Olsson, Jenny Rasck, Sarah Anderson, and Christine Mancini.

Supported by the National Heart, Lung and Blood Institute, National Institutes of Health by the Division of Intramural Research.

References

Contact

Peter Kellman
National Heart, Lung, and Blood Institute
National Institutes of Health, DHHS
10 Center Drive MSC-1061
Bethesda, MD 20892
USA
kellman@nih.gov

Siemens’ global MRI community offers peer-to-peer support and information. Radiologists, physicists, cardiologists, and technologists, have all contributed with publications, presentations, training documents, case studies, and more – all freely available to you via this unique network.

Don’t miss the >300 lectures and presentations by international and renowned experts in the field on all aspects of MR imaging that will allow you to be exposed to new ideas and alternative approaches.

The centerpiece of the MAGNETOM World Internet platform consists of MAGNETOM users’ results. Here you will find case reports, articles and application tips allowing you to optimize your daily work.

Put the advantages of the MAGNETOM World to work for you!

www.siemens.com/magnetom-world

Reprinted from MAGNETOM Flash (66) 3/2016
Case report

A 40-year-old female patient presented at the Department of Vascular Surgery with typical claudication during physical activity after a walking distance of maximum 200 meters. She complained of pain in the right calf that relieved after a short rest. At clinical examination the pulses of the lower extremities were unremarkable at both sides, the oscillogram at rest did not show any pathologies. Under stress the oscillogramm was restricted in the right leg, the treadmill ergometer examination had to be stopped at 3 km/h and 12% fall after 80 meters. The preliminary diagnosis was peripheral artery disease (PAD) grade IIB, a conservative therapy was initially suggested.

The patient was then transferred to our Department of Radiology for the evaluation of PAD. We performed multi-station bolus-chase magnetic resonance angiography (MRA) in the arterial phase of the pelvis and the whole lower extremity (3T, MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany) in 4 steps using a dedicated peripheral vascular coil together with the body-array and spine-array coils and a fast 3D spoiled gradient echo sequence (T1 3D FLASH) in coronal orientation (TR 3.75 ms, TE 1.33 ms, flip angle: 24°, parallel imaging factor: 3, base resolution: 384, number of slices per slab: 72–80, slice thickness: 1.3 mm, FOV: 420) [1]. A bi-phasic continuous injection of the contrast agent (CA) was used (1 ml/sec and 0.6 ml/sec) together with an automatic movement of the table (table advance per stage: 260–300 mm). Planning of the procedure was done by utilizing the Tim Planning Suite with a Set-n-Go protocol. For the timing of the CA the care bolus technique was applied. The MRA showed an occlusion of the popliteal artery in the P1/P2 segment over a distance of 5 cm with mild collateralization (Fig. 1). All the other vessels were

Figure 1: MR-angiography (3T, MAGNETOM Skyra) clearly depicting an occlusion of the popliteal artery in the P1/P2 segment over a distance of 5 cm with mild collateralization (blue arrows).
unremarkable which is unlikely for a vasosclerotic disease with only one focal manifestation in a young woman. Therefore we decided for a further evaluation by MRI of the knee to rule out other differential diagnosis for the occlusion. We performed knee MRI on a 1.5T scanner (MAGNETOM Avanto, Siemens Healthcare, Erlangen, Germany) with a dedicated knee coil (8-ch high-resolution knee array, Invivo, Gainesville, FL, USA). The protocol consisted of a sagittal TIRM sequence (TE 15 ms, TR 3160 ms, SL 3 mm, matrix 316 x 320) and an axial T2-weighted turbo-spin-echo sequence (TE 79 ms, TR 4680 ms, SL 3 mm, matrix 384 x 384). We found a cystic lesion (hyperintense on TIRM and T2), adherent to the popliteal artery, with an extraluminal appearance (Fig. 2). The diagnosis was cystic adventitial degeneration of the popliteal artery causing a compression of the artery leading to a stenosis.

The patient was again referred to the Department of Vascular Surgery and due to the clinical burden a surgical procedure was performed. The affected part of the popliteal artery was resected and replaced with the vena basilica by an end to end anastomosis. Postoperative MRA showed a regular opacification of the interponate (Fig. 3). The clinical symptoms disappeared after the intervention and the patient at present is free of any symptoms.

Discussion

The cystic adventitial degeneration is a challenging diagnosis. The disease was initially described by Atkins in 1947 [2]. It is a vascular condition characterized by a collection of mucinous material within the adventitia that constricts the vessel from the outside [3–5]. The P2 segment of the popliteal artery is the most common localization. Patients typically present with the same symptoms as patients with classical PAD. The disease predominantly occurs in young males (age < 50 years) presenting with typical symptoms of claudication. The lack of risk factors for arteriosclerosis and the atypical age should alert for other differential diagnosis. Beside cystic adventitial degeneration other differential diagnosis such as chronic exertional compartment or popliteal entrapment syndrome, chronic venous insufficiency, degenerative disk disease, osteoarthritis, spinal stenosis and thrombangiitis obliterans should also be considered [6].

In some cases MRA can be negative and therefore misleading because the cyst of the adventitia leads to a dynamic exercise-dependent flow inhibition. In our case the occlusion could be clearly depicted with MRI and further associated to a cystic lesion by a local MRI of the knee.
The pathogenesis of cystic adventitial degeneration is still unexplained, but several theories have been advanced:

1. The synovial theory: adventitial cysts are seen as ganglia originating from the adjacent joint space [7];
2. The embryologic theory: inclusion of mucin-secreting cells in the wall of the vessel [8];
3. Microtrauma theory: repeated injuries lead to a progressive degeneration of the arterial adventitia [9, 10].

Our case supports theory 1 because we found a connection between the cyst and ganglia that was adjacent to the knee joint space (Fig. 2).

MRI with a combination of MRA and anatomical sequences are essential tools in the clarification of differential diagnosis in PDA. Further MRI is crucial for surgical planning and also for postoperative control.

References

Coronary PET/MR of Micro-Calcification in Atherosclerosis

Philip M. Robson, Ph.D.; Marc R. Dweck, M.D.; Maria Giovanna Trivieri, M.D.; Ronan Abgral, Ph.D.; Nicolas A. Karakatsanis, Ph.D.; Zahi A. Fayad, Ph.D.

1 Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
2 British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
3 Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
4 Department of Nuclear Medicine, University Hospital of Brest, European University of Brittany, Brest, France

Introduction

Positron Emission Tomography (PET) is an established non-invasive imaging technology that allows the activity of specific disease processes to be measured. PET imaging using the radiotracer 18F-fludeoxyglucose (18F-FDG) has been used previously in the study of vascular inflammation in atherosclerotic plaque [1, 2]. FDG, a sugar analogue, is taken up more avidly by activated macrophages in the plaque compared to surrounding tissue. Consequently, increased 18F-FDG PET signal is a biomarker for active disease. Recently, 18F-sodium fluoride (18F-NaF), a PET tracer used in bone imaging that preferentially binds to areas of micro-calcification, has emerged as a marker of vascular micro-calcification activity in both aortic stenosis and atherosclerosis [3–5]. Whilst coronary calcium scoring using Computed Tomography (CT) measures macro-calcification and is well-established as a prognostic marker of coronary artery disease, the earlier stage of active micro-calcification is potentially a valuable marker of disease activity and of use for identifying patients with increased atherosclerotic burden and increased risk who may benefit from more aggressive risk factor modification.

Traditionally, cardiovascular PET imaging is performed using CT for anatomical and attenuation measurements. However, PET/CT imaging is limited by the additional radiation dose of CT, especially in chronic conditions such as atherosclerosis where serial imaging would be desirable. Moreover, vascular PET/CT imaging has predominantly focused on the aorta, carotid and peripheral arteries. Imaging of the coronary arteries, despite their great importance, is challenging owing to their small caliber and complex respiratory and cardiac motion. Although cardiac gating may be used in PET/CT to mitigate motion effects, data may invariably be lost. MR imaging on the other hand is well-suited for radiation-free imaging of cardiac motion required to correct PET data. The advent of hybrid systems combining PET cameras and Magnetic Resonance (MR) scanners is consequently of considerable interest for vascular imaging in atherosclerosis.

Figure 1: In a patient who had recently suffered a myocardial infarction, the culprit plaque is seen to cause luminal stenosis in the left anterior descending artery seen on MR-angiography (1A). Elevated 18F-NaF activity in the culprit plaque is identified by MR/PET and overlays the luminal stenosis seen on fused MR/PET-angiography (1B), and in a long axis view of the left ventricle (1C). Note uptake also in the wall of the aortic arch and the aortic valve. Extensive scarring is observed in late gadolinium enhanced MR in the territory of the lesion (1D).

Coronary 18F-NaF MR/PET imaging in a patient post myocardial infarction

A patient (64-year-old male) with unstable coronary artery disease who was 6 months post myocardial infarction for which he did not undergo revascularization underwent PET/MR imaging on the Biograph mMR system. He was injected with 5 MBq/kg 18F-NaF 30 minutes prior to PET imaging. PET data was acquired for 60 minutes. PET image reconstruction employed an iterative ordinary poisson ordered-subsets expectation-maximization algorithm with 21 subsets and 6 iterations incorporating point-spread-function resolution modeling [6], a 344 x 344 x 127 matrix and a 2 mm full-width-at-half-maximum Gaussian post-reconstruction filter. Attenuation correction included the body transmission coil and 6 channels of the 16-ch spine array mounted in the table, but omitted the 6-channel chest array used for cardiac imaging. Attenuation for the body was measured using a 6–7 minutes free-breathing golden-angle radial VIBE sequence to provide motion-averaged anatomical representation of the anatomy to match the PET data. Acquisition parameters included 500 x 500 mm².
Increased 18F-NaF uptake was identified in the culprit plaque short-axis late gadolinium enhanced imaging.

and long-axis TrueFISP cine imaging, 3D whole-heart attenuation data. Additional MR data acquired in the PET images due to mismatch of PET emission correction is used to eliminate artifacts that can appear in the PET images due to mismatch of PET emission and attenuation data. Additional MR data acquired simultaneously included anatomical axial HASTE, short- and long-axis TrueFISP cine imaging, 3D whole-heart contrast-enhanced coronary MR angiography [7] and short-axis late gadolinium enhanced imaging.

Increased 18F-NoF uptake was identified in the culprit plaque in the left anterior descending coronary artery. The plaque could be seen on the MR-angiography causing a proximal luminal stenosis that coincided with the hotspot on fused PET/MR images (Fig. 1). An extensive near-transmural myocardial infarction was observed on late gadolinium enhanced MR images, corresponding to the perfusion territory of this lesion.

The future of coronary PET/MR imaging

The preliminary work presented in this article has demonstrated the feasibility of coronary PET/MR imaging by successfully identifying active coronary disease in a patient post myocardial infarction. Additional technical development will improve the robustness and quantitative accuracy of attenuation correction methods for PET/MR.

Despite the superior coronary angiography and depiction of macro-coronary-calcification available with CT, combined PET/MR imaging is capable of excellent coronary angiography [8] and the potential for sensitive detection of macro-calcification [9] as well as having additional potential benefits. MR imaging provides a wealth of complementary information on plaque characteristics such as hemorrhage [9], vessel wall remodeling [10], and vessel wall permeability [11], as well as traditional cardiac MR measurements of morphology, function and scarring in a single scan. In addition, radiation-free MR imaging with its high spatial and temporal resolution has the potential to provide motion estimates that can be used to correct for the complex motion that affects coronary PET data, and will likely surpass cardiac gating that can be employed for PET/CT imaging.

The continued development of 18F-NoF as a tracer of atherosclerotic disease activity will be exciting. Studies are underway to examine whether coronary 18F-NoF PET/CT provides prospective prediction of myocardial infarction in the PREFFIR trial (ClinicalTrial.gov NCT02278211). With increased interest in coronary PET/MR, the advent of new tracers targeting other aspects of the complex biology of atherosclerosis and thrombosis is an exciting possibility. Finally, the reduced radiation dose compared to PET/CT paves the way to investigate serial imaging of atherosclerotic disease activity in both clinical and research arenas.

References

Contact

Zahi A. Fayad, Ph.D, FAHA, FACC, FISMRM
Icahn School of Medicine at Mount Sinai
Mount Sinai Endowed Chair in Medical Imaging and Bioengineering
Professor of Radiology and Medicine (Cardiology)
Director, Translational and Molecular Imaging Institute
Director, Cardiovascular Imaging Research
Vice-Chair for Research, Department of Radiology
One Gustave L. Levy Place Box 1234
New York, NY 10029-6574 USA
Phone: +1 212 824 8452
Fax: +1 212 368 8096
zahi.fayad@mssm.edu

1 18F: the product is currently under development and is not for sale in the US and in other countries. Its future availability cannot be ensured.
Imaging Proximal Coronary Arteries / Coronary Root Imaging

Jonathan Richer
Clinical Applications Specialist MRI, Siemens Healthineers, Wayville, SA, Australia

Introduction

Cardiac imaging can be a challenging examination and imaging coronary arteries can be slightly more complex still. There are quite a few protocols available for imaging of these small arteries within the Siemens library, such as a breath-hold slab, or using dual gating (respiratory and ECG gating) covering the entire heart or on a targeted approach 3D. Both methods can achieve excellent results. However, they are very patient-dependent, can be time consuming and, in the case of the breath-hold 3D, results are variable due to the very long breath-hold times.

To answer the clinical questions with MRI, the majority of clinicians will typically only need to consider imaging the coronary root in cases of anomalous vessels, and rarely do we need to image the entire vasculature.

Technique

I have modified a 2D TrueFISP sequence in order to image the proximal coronary arteries with a segmented bright blood approach imaging quickly and within a few breath-holds. This can be adapted for both 1.5 and 3T, and protocol parameters are very similar.

You can start by using the TrueFISP sequence in the Siemens library.

To achieve a nice thin slice thickness in order to minimize partial voluming effects, we need to image at a minimum slice thickness of 3 mm which this sequence won’t allow you to do unless we change the RF excitation pulse type from Fast → to Normal. This will disable the VERSE pulse mode and enables standard RF wave form for a better slice excitation profile, thus allowing for a thinner imaging slice.

Whilst a 3 mm slice thickness is great, we want to eliminate the slice gap, and what this sequence will allow us to do is to set a slice overlap which again helps with minimizing slice partial voluming. This can be set to -50% of the slice thickness where we end up with a slice thickness of 3 mm with a 1.5 mm overlap – achieving the similar results to truly acquiring the data at 1.5 mm slice thickness which is outside the possibility of this sequence. We will also need to increase the slice coverage from 25 slices to 30 or 35 slices – ensuring the coronary sinus is covered.

Another important parameter to look at is the echo spacing and ideally we must keep this below 3.4 msec. This is particularly important at 3T where an echo spacing of 3.4 or
lower will result in less dephasing artifacts. Changing the asymmetric echo from Weak → to Strong and increasing the bandwidth will enable you to reach this target echo spacing.

The next step is to ensure appropriate triggering in order to achieving motion-free images. This is done by segmentation where we need to segment/limit k-space data acquisitions to appropriate intervals within the cardiac cycle.

Now we need to increase the segments lines (k-space lines acquired in each heart beat) to roughly 30 which gives us a data readout of roughly 100 ms – suitable for most heart rates. To ensure optimal image quality, we must acquire data within the cardiac cycle when the coronary arteries are stationary. This can be done easily with the timing method – by looking at the trigger time on a 4-chamber cine image Trigger Time (TT stamp). Typically the most stable part of the cardiac cycle is in the diastolic phase; however, in fast heart rates, this may be in the systolic phase. Carefully page through the cine images, keep an eye on the right coronary sinus and take note of the trigger time when the heart stops moving in the diastolic phase and when it starts to move again at the end of the cardiac cycle – this will give us the window of opportunity to acquire data.

In the example above (Figs. 6A, B), we need to start acquiring after 669 msec and finish by 818 msec, and here (Fig. 7) we start at 695 msec and finish at 797 msec (102 + 695 = 797) which is excellent. If we need to start later or earlier, this is done by modifying the Trigger delay. In the case where the heart is not stationary for 102 msec (fast heart rates), we need to decrease the segments (k-space lines acquired in each heart beat) to reduce the Data window duration (data readout) fitting for the HR.

The next step is to ensure appropriate triggering in order to achieving motion-free images. This is done by segmentation where we need to segment/limit k-space data acquisitions to appropriate intervals within the cardiac cycle.

Now we need to increase the segments lines (k-space lines acquired in each heart beat) to roughly 30 which gives us a data readout of roughly 100 ms – suitable for most heart rates. To ensure optimal image quality, we must acquire data within the cardiac cycle when the coronary arteries are stationary. This can be done easily with the timing method – by looking at the trigger time on a 4-chamber cine image Trigger Time (TT stamp). Typically the most stable part of the cardiac cycle is in the diastolic phase; however, in fast heart rates, this may be in the systolic phase. Carefully page through the cine images, keep an eye on the right coronary sinus and take note of the trigger time when the heart stops moving in the diastolic phase and when it starts to move again at the end of the cardiac cycle – this will give us the window of opportunity to acquire data.

In the example above (Figs. 6A, B), we need to start acquiring after 669 msec and finish by 818 msec, and here (Fig. 7) we start at 695 msec and finish at 797 msec (102 + 695 = 797) which is excellent. If we need to start later or earlier, this is done by modifying the Trigger delay. In the case where the heart is not stationary for 102 msec (fast heart rates), we need to decrease the segments (k-space lines acquired in each heart beat) to reduce the Data window duration (data readout) fitting for the HR.

The next step is to ensure appropriate triggering in order to achieving motion-free images. This is done by segmentation where we need to segment/limit k-space data acquisitions to appropriate intervals within the cardiac cycle.

Now we need to increase the segments lines (k-space lines acquired in each heart beat) to roughly 30 which gives us a data readout of roughly 100 ms – suitable for most heart rates. To ensure optimal image quality, we must acquire data within the cardiac cycle when the coronary arteries are stationary. This can be done easily with the timing method – by looking at the trigger time on a 4-chamber cine image Trigger Time (TT stamp). Typically the most stable part of the cardiac cycle is in the diastolic phase; however, in fast heart rates, this may be in the systolic phase. Carefully page through the cine images, keep an eye on the right coronary sinus and take note of the trigger time when the heart stops moving in the diastolic phase and when it starts to move again at the end of the cardiac cycle – this will give us the window of opportunity to acquire data.

In the example above (Figs. 6A, B), we need to start acquiring after 669 msec and finish by 818 msec, and here (Fig. 7) we start at 695 msec and finish at 797 msec (102 + 695 = 797) which is excellent. If we need to start later or earlier, this is done by modifying the Trigger delay. In the case where the heart is not stationary for 102 msec (fast heart rates), we need to decrease the segments (k-space lines acquired in each heart beat) to reduce the Data window duration (data readout) fitting for the HR.
Now that we’ve taken care of the triggering and imaging slab, we must ensure we can acquire data within appropriate breath-hold times. This is done by applying breath-hold option under the Physio and PACE card which will then enable you to modify the concatenations (breath-holds). Once you have updated the concatenations, hover over the acquisition time “TA” to see the actual breath-hold times for each concatenation if appropriate for your patient.

Results

This modified sequence will enable you to image the coronary root with a standard 2D bright blood approach within a few breath-holds tailored for your patient’s breath-hold capability and heart rate which is generally acquired faster and with higher success rates when compared to the 3D options. Since we are imaging at 3 mm with a 1.5 mm slice overlap, this data will also enable you to create some modified multiplanar reconstructions (MPR) for better visualization in the 3D card. Figures 9 and 10 are some recent examples.

Table 1: Imaging parameters.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Value</th>
<th>Parameter change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slice thickness</td>
<td>3 mm</td>
<td>RF Pulse Type: Normal</td>
</tr>
<tr>
<td>Slice gap</td>
<td>-50%</td>
<td>Routine Tab</td>
</tr>
<tr>
<td>Segments</td>
<td>30 or appropriate for HR</td>
<td>Sequence Part 2 → define by segments</td>
</tr>
<tr>
<td>Breath-hold timing</td>
<td>15 seconds or appropriate</td>
<td>PACE → Breath-hold → Concatenations → 5</td>
</tr>
<tr>
<td>Echo spacing</td>
<td>3.4 or less</td>
<td>Sequence → Part 1 → asymmetric echo → Strong & possible BW increase</td>
</tr>
<tr>
<td>Flip angle</td>
<td>80–90 (the higher the brighter the blood)</td>
<td>Contrast → Flip angle</td>
</tr>
</tbody>
</table>

Conclusion

This technique is a great way to image the proximal coronary arteries using conventional imaging technique standard on any MAGNETOM system. However, this technique does have its limitations shared by all normal cardiac imaging, such as consistent heart rates and reproducible breath-holds.

Contact

Jonathan Richer
Siemens Healthcare Pty. Ltd.
HC APC AUS SV-CS APP DI
27 Greenhill Road
5034 Wayville SA
Australia
Phone: +61 1800 310 300
Mobile: +61 409 723 125
jonathan.richer@siemens.com
Compressed Sensing Cardiac Cine¹ Beyond speed. Beyond breath-holds.

Acquire free-breathing, high-resolution Cardiac Cine images.
Capture the whole cardiac cycle for precise quantification.
Expand patient population eligible for cardiac MRI.

¹ 510(k) pending. Compressed Sensing Cardiac Cine is not commercially available. Future availability cannot be guaranteed.
New horizons for MRI of vascular calcifications

The presence of dense peripheral vascular calcifications has negative prognostic implications in patients with peripheral arterial disease (PAD). In addition, the presence of dense calcifications may alter the choice of access site for patients undergoing percutaneous revascularization or TAVR (transcatheter aortic valve replacement) procedures. Peripheral MR angiography is commonly used as an alternative to CT angiography for the evaluation of patients with PAD. While peripheral vascular calcifications are readily depicted with CT angiography, they are inapparent with MR angiography (MRA).

In this work, we present an approach that combines nonenhanced MRA with tailored 3D imaging of vascular calcifications. While QISS is used for nonenhanced MRA, we propose two options for imaging of vascular calcifications:

1. PETRA, which relies on the use of an ultra-short echo time.
2. StarVIBE – as part of FREEZeit – which acquires data using a stack-of-stars k-space trajectory. Briefly, we adjust the echo time such that fat and water signals are in-phase, and apply a very small flip angle for the RF excitation which minimizes the impact of T1 relaxation time differences among tissues. This approach generates a homogenous signal level across most tissues, except for calcifications appear dark due to a very short T2* relaxation time. The use of StarVIBE is also helpful in minimizing motion sensitivity in the abdominal and pelvic regions compared with a fully Cartesian 3D acquisition.

1 Requires QISS license on the scanner.

Figure 1: 69-year-old male. MIP coronal QISS MRA (1A) demonstrates patent arterial lumen with excellent correlation to CTA (1B). MinIP coronal projections of PETRA (1C, B/W inverted) and StarVIBE (1D, B/W inverted) both demonstrate the calcifications seen on the CTA, but the calcifications are better defined using the latter technique.

Figure 2: 54-year-old female. Axial reconstruction (B/W inverted) from StarVIBE (2A) demonstrates a ring of calcification in the left external iliac artery, which corresponds closely to the appearance on CTA (2B).
How to build your protocol on syngo.MR E11A
1.5T MAGNETOM Aera-XQ system?

1. PETRA approach
One can start with the default PETRA protocol that can be found in the following location:
Default → Sequence Region → Siemens Seq → Default.
The parameters to be updated are as follows:

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Tab combination</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation</td>
<td>Routine</td>
<td>Coronal</td>
</tr>
<tr>
<td>TR</td>
<td>Contrast/Common</td>
<td>4.7</td>
</tr>
<tr>
<td>TE</td>
<td>Contrast/Common</td>
<td>0.07</td>
</tr>
<tr>
<td>Flip angle</td>
<td>Contrast/Common</td>
<td>5</td>
</tr>
<tr>
<td>Table position</td>
<td>System/Miscellaneous</td>
<td>150</td>
</tr>
<tr>
<td>model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial views</td>
<td>Resolution/Common</td>
<td>60000</td>
</tr>
<tr>
<td>FOV read</td>
<td>Resolution/Common</td>
<td>400</td>
</tr>
<tr>
<td>Base resolution</td>
<td>Resolution/Common</td>
<td>384</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Sequence/Part1</td>
<td>338</td>
</tr>
</tbody>
</table>

Table 1: Protocol adaptations required for PETRA sequence to image calcification. Please start with the default protocol that can be found on scanner at: Default → Sequence Region → Siemens Seq → Default

2. StarVIBE approach (requires FREEZEit license):
One can start with any of the StarVIBE sequences. We started with the one in the following location:
SIEMENS → abdomen → library → 3D
The parameters to be updated are as follows:

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Tab combination</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation</td>
<td>Routine</td>
<td>Coronal</td>
</tr>
<tr>
<td>Slice thickness</td>
<td>Routine</td>
<td>1.0</td>
</tr>
<tr>
<td>Slice Oversampling</td>
<td>Routine</td>
<td>25.0</td>
</tr>
<tr>
<td>Slices per slab</td>
<td>Routine</td>
<td>128</td>
</tr>
<tr>
<td>TR</td>
<td>Contrast/Common</td>
<td>7.61</td>
</tr>
<tr>
<td>TE</td>
<td>Contrast/Common</td>
<td>4.77</td>
</tr>
<tr>
<td>Flip angle</td>
<td>Contrast/Common</td>
<td>3.5</td>
</tr>
<tr>
<td>Fat suppr.</td>
<td>Contrast/Common</td>
<td>None</td>
</tr>
<tr>
<td>Table position</td>
<td>System/Miscellaneous</td>
<td>150</td>
</tr>
<tr>
<td>mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radial views</td>
<td>Resolution/Common</td>
<td>600</td>
</tr>
<tr>
<td>FOV read</td>
<td>Resolution/Common</td>
<td>416</td>
</tr>
<tr>
<td>Base resolution</td>
<td>Resolution/Common</td>
<td>416</td>
</tr>
<tr>
<td>Slicere resolution</td>
<td>Resolution/Common</td>
<td>75%</td>
</tr>
<tr>
<td>Optimization</td>
<td>Sequence/Part1</td>
<td>In phase</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Sequence/Part1</td>
<td>300</td>
</tr>
<tr>
<td>Incr. Gradient spoiling</td>
<td>Sequence/Part2</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 2: Protocol adaptations required for StarVIBE sequence to image vascular calcification. Please start with the protocol that can be found on scanner at: SIEMENS → abdomen → library → 3D

Please make sure that fat-suppression and centric ordering are turned off.

<table>
<thead>
<tr>
<th>PETRA</th>
<th>StarVIBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive to motion</td>
<td>Insensitive to motion</td>
</tr>
<tr>
<td>Available on all syngo.MR E11 systems</td>
<td>Part of the FREEZEit option</td>
</tr>
</tbody>
</table>

Suggestions for 3T imaging
1. For PETRA: No change required.
2. For StarVIBE: Please use the above values from MAGNETOM Aera-XQ, and then change the following:
 - TE = 2.46 ms, Flip angle = 2.5°, TR = 4.8 ms.

Post-processing to generate CT-like images
Both MR sequences generate images that make calcifications appear dark. This can be changed by going to the ‘Image’ menu, choosing the ‘Color Lookup Table’ option, and then selecting ‘Inverted Gray Scale’. Now the calcifications appear bright – just like in CT. Use of a minimum intensity projection (MinIP) can improve display of the vascular calcifications.

Discussion
We have shown that angiography and calcification imaging can be accomplished using nonenhanced MR approaches during a single scan session. We presented two approaches for imaging of vascular calcification, one based on PETRA and the other on StarVIBE. In our experience so far, the StarVIBE outperforms PETRA due to its insensitivity to motion and overall image sharpness. A more detailed analysis, including 3T results, can be found in our recently published article “MR Imaging of Iliofemoral Peripheral Vascular Calcifications using Proton Density-Weighted, In-Phase Three-Dimensional Stack-of-Stars Gradient Echo” by Edelman et al. in Magnetic Resonance in Medicine, 2016.

Coils: Body matrix coils were used in our studies.

Contact
Marcos P. Botelho, M.D.
Northwestern University
Department of Radiology
Evanston, IL, USA
marcos.botelho@fsm.northwestern.edu

Reprinted from MAGNETOM Flash (67) 3/2016
Compressed Sensing: Application to Time-of-Flight MR Angiography

Takayuki Yamamoto; Tomohisa Okada; Koji Fujimoto; Yasutaka Fushimi; Akira Yamamoto; Kaori Togashi

Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Kyoto, Japan

Introduction

Time-of-Flight MR Angiography (TOF MRA) is a reliable method to visualize the cerebral vasculature and is widely used in clinical practice. It is a non-invasive technique, which is free from radiation exposure and adverse effects of contrast materials. The main concerns of high-resolution TOF MRA are its long scan time and decreased signal-to-noise ratio (SNR).

Compressed sensing (CS) provides a novel approach to restore the original image quality from fewer k-space acquisitions by exploiting intrinsic sparsity in the imaged object combined with iterative reconstruction and its denoising capabilities. MRA is a good candidate for CS because of the high signal in the vessels which are sparse in space [1]. The combination of parallel acquisition (PAT) and CS can significantly reduce the examination time [3].

Scan time reduction is important not only for economic reasons but also to reduce the burden on the patient and to limit motion artifacts which can disrupt vascular depictions. In this case study, we will describe our early experiences with Compressed Sensing (CS) TOF MRA in various clinical patients to visualize the cerebral arteries.

CS TOF technique

For data acquisition, a conventional 3D TOF gradient-echo sequence was combined with random sampling. For this purpose, the k-space of each imaging slab was subsampled in the ky-kz phase-encoding with a variable density Poisson disk sampling pattern. In the pattern, the sampling density was gradually increased from periphery toward the center of k-space to optimize the acquisition of data in high image-energy central k-space regions and hence enhance signal-to-noise ratio (SNR). The incoherence of the random sampling pattern would lead to artifacts that scatter across the whole image in a ‘noise-like’ manner after Fourier transform. A fully sampled region in the center of k-space was utilized to estimate the coil sensitively maps.

After data acquisition, the image can be recovered from the sub-sampled data by nonlinear, iterative reconstruction.

Figure 1: Axial (1A–C) and coronal (1D–F) MIP images of a healthy subject (35-year-old, male) reconstructed from full-sampling data (1A, D), 3.4-fold net acceleration (1B, E), and 6.4-fold net acceleration (1C, F), respectively.

WIP, Compressed Sensing TOF is currently under development and is not for sale in the US and in other countries. Its future availability cannot be ensured.
where y is the acquired k-space data and x the estimated image. The system matrix, A, describes the data acquisition process, which is required for the comparison of the image and acquired data. The transform sparsity term enforces a sparse representation of the image. For this purpose, the image is transformed a sparse representation by $\Phi(\cdot)$, for example, using the redundant Haar wavelet transform. The balance between data fidelity and sparsity is adjusted with the regularization parameter λ, which was empirically set to 0.0002. The iterative reconstruction process was terminated after 20 iterations.

Imaging was performed at a clinical 3T MR scanner (MAGNETOM Skyra, Siemens Healthcare, Erlangen, Germany) with a 32-channel head coil. Parameters for the imaging protocol were TR 20 ms, TE 3.7 ms, flip angle 18° and bandwidth 189 Hz/Px. In total, 5 slabs were acquired with 20% slice oversampling with a matrix of 384 x 326 x 90 and a voxel size of 0.3 x 0.3 x 0.35 mm (FOV 220 x 190 cm). The images of conventional TOF imaging with a PAT factor of 2 and 3 were compared to those acquired with CS TOF featuring acceleration rates from 3.4 up to 6.4.

Image reconstruction was done directly on the scanner with standard hardware.

Imaging examples of cerebral angiography with CS TOF

Figures 1 and 2 show images of healthy subjects. On maximum intensity projection (MIP) images, cerebral arteries are well visualized in CS TOF images with acceleration rates from 3.4 up to 6.4 (Fig. 2). Although the depiction of distal branches become weaker at a higher acceleration rate (Fig. 3), the visualization of proximal branches was acceptable, which is important to diagnose the steno-occlusive diseases or cerebral aneurysms. We have previously reported that the diagnostic quality of distal branches was maintained with nominal acceleration factor of 6, which achieved a shorter acquisition time of less than half of the conventional PAT acceleration of 2 [1].
Case 1

68-year-old male was followed up for a large aneurysm of right vertebral artery for several years (Fig. 4). The aneurysm gradually increased in size, and the patient was admitted to our hospital. The size and the gourd-like shape of the aneurysm are well depicted in CS TOF. There is almost no difference in the MIP image between CS TOF and conventional TOF, although CS TOF is twice as fast.

Figures 3 through 6 show cases in clinical practices. The result images of CS TOF and conventional TOF are displayed side by side to facilitate comparison of vascular shape. Conventional TOF used modified GRAPPA (acceleration factor of 3) and partial Fourier technique (7/8 for the phase and the slice direction). A net acceleration rate of 6.1 was used for CS TOF for all cases. Matrix size of conventional TOF was kept the same as CS TOF, but the number of slab was 3, which was set to 5 for CS TOF. The acquisition time for conventional TOF was 3 min 11 sec.

Conclusion

CS TOF can drastically reduce the scan time while minimizing loss of image quality at high acceleration rates. In some cases, residual sub-sampling artifacts remain in the reconstructed images, however without influencing the image quality of the MIP angiogram remarkably. The first experiences indicate that a diagnostic image quality can be achieved in clinical setting using highly accelerated CS TOF for the visualization of cerebral arteries. Our results warrants future larger clinical studies in a larger cohort to find the optimal balance between acquisition speed and high resolution.

Acknowledgements

The kind support of Aurelien F. Stalder, Yutaka Natsuaki, and Michaela Schmidt, employees in research and development functions of Siemens Healthineers, is greatly appreciated.
References

Contact

Tomohisa Okada, M.D., Ph.D.
Human Brain Research Center
Graduate School of Medicine
Kyoto University
54 Shogoin-Kawaharacho,
Sakyo-ku
Kyoto 606-8507
Japan
tomokada@kuhp.kyoto-u.ac.jp

Learn more!

Don’t miss the talks from experienced and renowned experts on all aspects of Cardiovascular MRI at www.siemens.com/magnetom-world
Improving Dynamic MR Angiography: Iterative TWIST

Bernd J. Wintersperger1,2; Luigia D’Errico1,2; Christoph Forman3; Jens Wetzl4; Michaela Schmidt2; Aurelien F. Stalder3

1 Department of Medical Imaging, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
2 Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
3 Siemens Healthcare, Erlangen, Germany
4 Pattern Recognition Lab, Department of Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany

Introduction

Nowadays, many vascular territories are explored non-invasively for the purpose of diagnosis, therapy planning and surveillance of vascular disease. Invasive catheter angiography is almost exclusively being used during therapy and intervention. However, the benefits of invasive approaches include the ability to visualize dynamics of applied dye and may therefore provide additional information on the potential hemodynamic relevance of vascular disease or stenosis.

In recent years, magnetic resonance angiography (MRA) has become a dominant tool of non-invasive high-resolution delineation of body and peripheral vasculature. With the ever increasing importance of continuous surveillance in genetic aortic disease (e.g. Marfan’s, Ehlers-Danlos, Loeys-Dietz, etc.), the role of MRA developed beyond atherosclerotic disease and focuses more often on a younger population.

Most commonly, outside the brain, contrast-enhanced MRA (CE-MRA) techniques are being employed sampling a high-resolution data set after a contrast agent timing bolus.

In order to overcome the limitations of purely static MRA, various techniques such as time-resolved imaging of contrast kinetics (TRICKS) and time-resolved angiography with stochastic trajectories (TWIST) are being employed [1, 2]. The predominant underlying principle of these approaches relates to keyhole imaging with more frequent sampling of central k-space data vs. peripheral k-space data. In addition to commonly applied acceleration techniques (e.g. partial Fourier, parallel imaging, etc.), dynamic CE-MRA also relies on view-sharing for peripheral k-space coverage in order to improve temporal resolution (Figs. 1–2).

Dynamic CE-MRA using TWIST has proven beneficial and successful in the diagnosis of disease across vessel territories from head to toe [3–5]. Besides a direct vascular focus, the relatively high temporal resolution 3D coverage, combined with prominent T1-weighting and background tissue suppression, has been applied to tissue perfusion studies.

Figure 1: In TWIST, sampling of the (1A) complete peripheral k-space (region ‘B’) can be achieved by the variation of the sampling density (1B–D). With a sampling density of (1B) 33%, the peripheral k-space is subdivided into 3 different samplings, while for sampling densities of (1C) 25% and (1D) 20%, peripheral k-space acquisition requires 4 or 5 different samplings, respectively.
Dynamic contrast-enhanced MRA with iterative TWIST

With repeated updates of the central k-space data, the dynamic pass of a Gadolinium-based contrast agent (GBCA) can be followed through the vasculature of interest without the need for a timed bolus. However, while the sharing of peripheral k-space data across multiple time points provides an improved update rate of images (apparent ‘temporal resolution’), it also results in a prolongation of the ‘temporal footprint’ of TWIST (Fig. 2). Especially in areas of possible motion and fast blood circulation (e.g. chest, pulmonary vasculature), this may result in inconsistencies, temporal blurring and subsequent image degradation, specifically of small vasculature.

Recent interest in Compressed Sensing approaches successfully demonstrated benefits of these techniques in various MR applications including CE-MRA [6] and dynamic CE-MRA [7, 8]. The potential benefits of such iterative reconstruction approaches have recently been explored in clinical scenarios [8, 9].

Iterative TWIST (IT-TWIST)\(^1\) uses the sampling pattern of a regular TWIST acquisition, but does not rely on view sharing during image reconstruction. Instead, the implemented iterative reconstruction algorithm relies on the intrinsic incoherent sampling pattern of the peripheral k-space data and uses a Compressed Sensing approach with spatial and temporal regularization to suppress artifacts arising from k-space undersampling.

More in detail, the TWIST acquisition consists of interleaved acquisitions of central k-space (region ‘A’) and different incoherent sub-samplings of peripheral k-space (region ‘B’). Regular TWIST reconstruction then combines multiple ‘B’ regions (view sharing) with one ‘A’ region to form a coherently subsampled k-space suitable for parallel imaging reconstruction (see Figures 1, 2). In contrast, the iterative TWIST reconstruction uses a single region ‘A’ and region ‘B’ pair per time frame, thus decreasing the ‘temporal footprint’ to be identical to the ‘image update rate’ (apparent ‘temporal resolution’) (Fig. 3). To recover the individual time frames despite the higher undersampling, a non-linear iterative reconstruction algorithm is being used. The iterative reconstruction uses spatio-temporal regularization based on a Compressed Sensing reconstruction approach on Haar wavelets [8, 10]. This reconstruction process results in a considerable computational burden and therefore is carried out on the Graphics Processing Unit (GPU) of the standard image reconstruction system. Depending on detailed acquisition parameters and time frames current reconstruction times are about 20 minutes.

\(^1\) WIP: IT-TWIST is work in progress and is not commercially available. Future availability cannot be guaranteed.

Figure 2: Assuming a fixed size of the central k-space (region ‘A’) sampling in TWIST, a reduction in the density of the peripheral k-space (region ‘B’) sampling results in an improved temporal resolution but simultaneously also prolongs the temporal footprint of the technique. Temporal resolution in TWIST refers to the distance of two adjacent ‘A’ regions and as such reflects the contrast agent dynamics while the temporal footprint describes the time from beginning to the end of all data sampling used for a single time frame data reconstruction. As shown, the prolongation of the temporal footprint mainly relates to the update of the central k-space (region ‘A’) between the different peripheral k-space samplings (region ‘B’).

Figure 3: Iterative TWIST (IT-TWIST) allows a substantial shortening of the temporal footprint in data reconstruction. While in standard TWIST a complete coverage of region ‘B’ is required (sampling density of 20% shown), IT TWIST reconstruction reduces the temporal footprint to a single ‘B’ region in addition to the respective central k-space (region ‘A’). This is achieved by the incoherent sampling pattern of region ‘B’ in TWIST and application of a Compressed Sensing reconstruction approach with spatial and temporal regularization.
In order to assess the impact of such improved ‘temporal footprints’ and increased signal-to-noise ratio (SNR) of the CS reconstruction algorithm due to de-noising, we aimed at patients referred for the assessment of the thoracic aorta and the great thoracic vessels. The applied imaging protocol focused on high temporal and spatial resolution [8] (Table 1). All imaging was performed on a 64-channel MAGNETOM Skyra® system and contrast enhancement for TWIST was provided by automated injection of Gadobutrol (Gadavist, Bayer Pharma, Berlin) [8]. All acquired raw data sets were reconstructed twice: using the (1) standard product reconstruction as well as the above described (2) IT-TWIST reconstruction.

In all patients, IT-TWIST was equal or superior to TWIST reconstruction; in fact, in the vast majority of cases, image quality as assessed by two readers with respect to aortic contrast-to-noise (CNR), aortic delineation and medium-to-

Table 1: Imaging protocol.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoV</td>
<td>$333 \times 380 \times 88 \text{ mm}^3$</td>
</tr>
<tr>
<td>Voxel size (measured)</td>
<td>$1.2 \times 1.0 \times 1.2 \text{ mm}^3$</td>
</tr>
<tr>
<td>Voxel size (interpolated)</td>
<td>$1.0 \times 1.0 \times 1.0 \text{ mm}^3$</td>
</tr>
<tr>
<td>iPAT</td>
<td>4×2</td>
</tr>
<tr>
<td>TR / TE / Flip angle</td>
<td>$2.89 \text{ ms} / 1.05 \text{ ms} / 17^\circ$</td>
</tr>
<tr>
<td>'A' region (sampling density)</td>
<td>15%</td>
</tr>
<tr>
<td>'B' region (sampling density)</td>
<td>20%</td>
</tr>
<tr>
<td>Temporal resolution (apparent)</td>
<td>2.4 s</td>
</tr>
</tbody>
</table>

Figure 4: Selection of imaging parameters of the applied TWIST acquisition. Contrast enhancement was provided by injection of 8 ml of (1:3) diluted (saline) gadolinium based contrast agent.

Figure 5: Example of a patient with large patch aneurysm after repair of aortic coarctation (COA) in childhood with identical time point images displayed for standard TWIST and iterative TWIST. Iterative TWIST demonstrates much better delineation of small-to-midsize pulmonary vessels (5A), as well as lower noise levels in (5B) aortic MIP reconstructions as well as in (5C) thin source image data.
small vessel (pulmonary vasculature) delineation improved by at least 1 point on the Likert scale (0 = non-diagnostic; 1 = poor; 2 = fair; 3 = good; 4 = excellent) [9] (Figs. 4–6). The most prominent improvement with IT-TWIST was seen in the area of medium-to-small vessels of the pulmonary vasculature, which also demonstrated an improvement in the signal response amplitude as compared to TWIST [8] (Figs. 4–6).

Conclusion

Initial experiences of IT-TWIST in clinical thoracic imaging with dynamic CE-MRA demonstrate extremely promising results, especially when focusing on the medium-to-small sized pulmonary vasculature. The specific improvement within the pulmonary vasculature most likely relates to the substantially shortened ‘temporal footprint’ with IT-TWIST. This approach allows to further push temporal resolution by lowering sampling density of the peripheral k-space. As the principles of Compressed Sensing maintain a reasonable SNR and CNR level, a further push of spatial resolution by using higher parallel imaging accelerations is possible. While experience in other vascular territories is currently limited at our site, further exploration will determine the possible benefit across the body vasculature and also the impact of IT-TWIST on detailed parameters of vessel boundaries and vessel size. Furthermore, it will provide insights into the possibly required adaptation of specific factors of the reconstruction based on territory, image quality need and acceleration.

Nevertheless, IT-TWIST represents an important step ahead towards high spatial/high temporal resolution dynamic CE-MRA of the future. This will provide a straightforward inject-and-shoot CE-MRA protocol without the need for any bolus timing and quite possibly also result in changes of the required contrast agent volumes.

References

4D Flow MRI – an Update

Michael Markl, Ph.D. 1,2; James Carr, M.D. 1; Michael Rose, B.S. 3; Cynthia K. Rigsby, M.D. 1,3,4; Julia Geiger, M.D. 1

1 Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, USA
2 Department Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, USA
3 Department of Medical Imaging, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, USA
4 Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, USA

Introduction

MRI techniques provide non-invasive and non-ionizing methods for the accurate anatomic depiction of the cardiovascular system. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire blood flow simultaneously with anatomical data within a single measurement (phase contrast (PC) principle). The characterization of the dynamic components of blood flow with MRI has achieved considerable progress in recent years including new methodological advances such as 4D Flow MRI for the comprehensive in-vivo analysis of complex time-resolved 3D blood flow characteristics [1–7].

Standard clinically employed 2D CINE PC MRI takes advantage of the direct relationship between blood flow velocity and the MR signal to measure blood flow velocity along a single direction, similar to Doppler echocardiography [8]. Typical clinical imaging protocols measure blood flow in 2D imaging slices positioned orthogonal to the vessel which usually includes single-direction velocity measurement (through-plane encoding) and is performed during a 10–15 second breath-hold period. The resulting images are used to quantify flow parameters such as peak velocity, net flow, or regurgitant fraction at the site of the imaging plane.

In 4D Flow MRI, velocity is encoded along all three spatial dimensions throughout the cardiac cycle, thus providing a time-resolved 3D velocity field. As a result, 4D Flow MRI can provide full volumetric coverage of the vessel of interest and thus give more comprehensive spatial and temporal (4D = 3D + time) coverage. In this article, we describe the latest technical progress and data analysis protocols of the 4D Flow MRI for the Siemens platform, and we present different examples for clinical cardiothoracic and intracranial applications.

Technical advances

4D Flow data acquisition

Initial limitations for including 4D Flow MRI into clinical daily routine standard MRI protocols were related to long scan times of up to 20 minutes. Methodological improvements based on k-t parallel imaging or Compressed Sensing have been successfully employed to achieve significant imaging acceleration and reduced times [9, 10]. Combination with advanced respiration control [11, 12] for cardiothoracic and abdominal applications today allows the acquisition of 4D Flow MRI data within clinically acceptable scan times on the order of 5–10 minutes.

Continued developments based on alternative data sampling strategies such as radial or spiral data readout have high potential to further reduce scan times. For example, a recent study showed that the combination of highly efficient spiral sampling with dynamic compressed sensing can achieve major acceleration, which allowed for the acquisition of abdominal 4D Flow MRI data during a single breath-hold [10]. Ongoing methodological improvements focus on the acquisition of dual-venc acquisitions [13–15] which are expected to be of great benefit for the simultaneous assessment of low and fast flow velocities, e.g. in the brain or in congenital heart disease (CHD), where a high dynamic range is desirable.

<table>
<thead>
<tr>
<th>venc</th>
<th>Respiration Gating</th>
<th>Acceleration Factor</th>
<th>Spatial Resolution</th>
<th>Temporal Resolution</th>
<th>Total Scan Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>aorta/PA</td>
<td>150–400 cm/s</td>
<td>60–80%</td>
<td>5</td>
<td>(2.2–2.8 mm)</td>
<td>35–45 ms</td>
</tr>
<tr>
<td>whole heart</td>
<td>150–400 cm/s</td>
<td>60–80%</td>
<td>5</td>
<td>(2.8–3.2 mm)</td>
<td>35–45 ms</td>
</tr>
<tr>
<td>head</td>
<td>80–120 cm/s</td>
<td>N/A</td>
<td>5</td>
<td>(1.0–1.2 mm)</td>
<td>35–45 ms</td>
</tr>
<tr>
<td>abdomen</td>
<td>60–120 cm/s</td>
<td>60–80%</td>
<td>5</td>
<td>(2.5–3.0 mm)</td>
<td>35–45 ms</td>
</tr>
</tbody>
</table>

Table 1: 4D Flow MR imaging scenarios for different application areas based on adult subjects with heart rates on the order of 60–70 bpm. For cardiothoracic and abdominal applications, respiratory navigator gating is typically used to minimize breathing artifacts. The combination with advanced data acquisition strategies (respiratory driven phase encoding) allows for high scan efficiencies (R_{ref}) on the order of 60–80%. The selection of the lower end of the velocity sensitivity (venc) is based on the expected maximal normal blood flow velocities in each vascular territory which will have to be adapted to higher velocities in patients with cardiovascular disease such as aortic valve stenosis. PA = pulmonary artery.
range is critical to cover the wide arterial and venous flow velocity spectrum.

A summary of imaging protocols for different application areas is provided in Table 1 and illustrates currently achievable spatio-temporal resolution and scan times based on recently described k-t accelerated 4D Flow MRI methods with high acceleration factors of $R = 4 – 6$ [16–18].

4D Flow data analysis workflow

For the visualization of cardiovascular flow patterns, commonly used techniques are 3D streamlines and time-resolved 3D pathlines to depict changes in hemodynamics associated with disease. Figure 1 illustrates the use of 3D streamlines to depict systolic 3D flow patterns in the thoracic aorta of a patient with a bicuspid aortic valve. Time-resolved 3D pathlines utilize the full 4D (3D and time) information and can be used to visualize the spatio-temporal dynamics of pulsatile 3D blood flow patterns.

An example of aortic 4D Flow MRI and comparison of the resulting imaging findings with standard MRI techniques is shown in Figure 1. A benefit compared to traditional 2D PC-MR imaging is related to the possibility for retrospective and flexible quantification and visualization of cardiovascular blood flow without being limited to 2D planes as in standard 2D CINE PC MRI. 4D Flow MRI offers a single and easy to prescribe data acquisition (3D volume covering cardiovascular region of interest) instead of multiple 2D planes for flow analysis with standard 2D CINE PC MRI that may be difficult to position in cases with complex vascular architecture (e.g. congenital heart disease, liver vasculature).

As a result, 4D Flow MRI may help to avoid missing regions of interest for flow quantification where 2D CINE PC MRI may not have been acquired or planes were misplaced. Recent studies have confirmed that volumetric analysis based on 4D Flow MRI allows for improved assessment of aortic and pulmonary peak velocities which may be underestimated by 2D CINE PC MRI [19, 20].

The anatomic and velocity information of the 4D Flow data can additionally be used to calculate a 3D phase contrast angiogram (3D PC-MRA) which can be combined with 3D blood flow visualization to guide anatomic orientation (see Figs. 1–3). In addition, the 3D PC-MRA data serve as a basis for the 3D segmentation of vessels to improve 3D visualization or to provide the ability to mask the underlying velocity data to calculate systolic 3D velocity maximum intensity projections (MIP). As shown in Figure 2C, systolic velocity MIPs are an easy to use tool to give an overview over the 3D velocity distribution as well as automated quantification of peak velocities v_{peak} and thus estimate pressure gradients Δp using the simplified Bernoulli equation ($\Delta p = 4v_{\text{peak}}^2$). The increased complexity of 4D Flow data (3D + time + 3-directional velocities) offers the opportunity to derive new physiologic and pathophysiologic hemodynamic parameters, such as wall shear stress (WSS), pulse wave velocity, 3D pressure difference maps, or turbulent kinetic energy. These advanced hemodynamic measures can provide quantitative information on the impact of vascular pathologies on cardio- or cerebro-

Figure 1: MR angiography (MRA, depicted as a maximum intensity projection, MIP) and 2D CINE PC MRI in a patient with bicuspid aortic valve (BAV) disease. The patient underwent standard MR angiography (1A) as well as 2D CINE PC-MRI (1B) for the assessment of valve morphology and flow quantification at the level of the aortic valve in the ascending aorta (AAo). 1B shows the maximum aortic valve opening and blood flow during peak systole. The yellow line in 1A shows the imaging plane for 2D CINE PC-MRI acquisitions in 1B. (1C) 3D streamline visualization of systolic blood flow in the thoracic aorta as assessed by 4D Flow MRI. Note that 4D Flow MRI provides full volumetric coverage of the thoracic aorta and flexible retrospective quantification of peak systolic velocities at multiple locations in the thoracic aorta which revealed a peak velocity of 1.7 m/s distal to the BAV. DAo = descending aorta, PA = pulmonary artery.

Reprinted from MAGNETOM Flash (66) 3/2016
vascular blood flow patterns beyond currently available techniques. For example, methods have been developed to compute volumetric 3D WSS, a known pathophysiological parameter implicated in vascular remodeling, along the segmented surface of the entire aorta (Fig. 2D) [21, 22]. The application of this technique in patients with aortic disease demonstrated that a 3D WSS mapping technique allows for compact visualization and regional quantification of hemodynamic parameters assessed across multiple subjects [23].

For a detailed overview of 4D Flow MRI developments and its use for 3D flow visualization and quantification throughout the human circulatory systems the reader is referred to a number of recently published review articles [1–7] and 4D Flow MRI consensus statement [24].

Clinical applications

In recent years, 4D Flow MRI has been increasingly applied in various vessel territories and diseases ranging from aortic pathologies to complex CHD, abdominal indications and intracranial applications.

Thoracic aorta

A number of studies indicate the important role of 4D Flow MRI for the comprehensive analysis of the impact of focal...
Figure 4: (4A) Blood flow visualization based on 3D streamlines in a 16-year-old patient with tricuspid atresia and palliative surgical repair with connection of the upper and lower caval veins directly to the right pulmonary artery (RPA) with detour of the right heart in the so called Fontan procedure. (4B) Color coded streamlines illustrate the distribution of venous flow originating in the superior caval vein (SVC, red) and inferior caval vein (IVC, yellow) towards the RPA and left pulmonary artery (LPA). Retrospective flow quantification allows for the assessment of peak velocities and flow volumes in the vessels of interest (4A). Blood flow in the left ventricle and aorta is color-coded to local flow velocity in this example.

Figure 5: 3D flow pattern in a 15-year-old patient with d-transposition of the great arteries (d-TGA) after arterial switch procedure depicting the typical postoperative anatomy of the main and branch pulmonary arteries without relevant postsurgical obstruction shown for main and left pulmonary artery (MPA, LPA). Color-coded streamlines according to vessel origin and velocity reveal the flow distribution in the pulmonary arteries (blue-purple) and the aorta (green-red) during systole. Note the marked helix flow in the DAo as a result after associated coarctation repair.

aortic abnormalities (aortic valve abnormality, coarctation, aortic dilatation) or genetic disorders (e.g. Marfan syndrome) on changes in 3D blood flow affecting the entire aorta [25–28]. Changes in flow patterns due to aortic valve stenosis or congenitally abnormal valves such as bicuspid aortic valve (BAV) affect predominantly the ascending aorta but can also expand into the aortic arch and descending aorta. In addition, the application of 4D Flow MRI in patients with aortic coarctation provides an overview of the hemodynamic changes which are not limited to the coarctation site and might be overlooked or misjudged by 2D CINE PC MRI. In addition, flow derived parameters such as WSS have shown high potential to derive better understanding of the underlying pathophysiology for aortic disease progression. Figure 3 depicts flow alterations in two representative patients with focal (BAV) and global (Marfan) aortic disease.

Complex congenital heart disease

Whole heart 4D Flow MRI techniques allow for a non-invasive comprehensive assessment of cardiovascular hemodynamics in the heart and its surrounding great vessels. While scan times are still long due to full volumetric coverage of the entire heart (8–12 minutes depending on heart rate and respiration control efficiency), it facilitates the systematic assessment of blood flow in multiple vessels and enables the retrospective analysis of any region of interest within the imaging volume. The examination of the pulmonary arteries and the right heart commonly has priority in CHD, and postsurgical assessment of the pulmonary blood flow is crucial to rule out potential re-stenoses or postsurgical sequelae which need re-intervention such as in patients with tetralogy of Fallot, transposition of the great arteries, or in subjects with functional single ventricle (see Figs. 4 and 5). Correct plane placement and flow assessment by 2D CINE PC MRI is particularly challenging in these cases. Previous studies have shown that the 4D Flow technique can reliably identify altered 3D flow characteristics related to the post-interventional status in patients with CHD. In addition, 4D Flow MRI based flow quantification has been shown to be equivalent or even improved when compared to 2D techniques, while needing less imaging time than time needed for positioning and acquisition of multiple planes [29–33].

Cerebrovascular disease

In clinical practice, transcranial Doppler ultrasound is routinely used for cerebrovascular flow measurements. However, the technique is operator-dependent and significantly limited by the available acoustic windows of the head, mainly in adults. 2D PC-MRI can provide flow measurements in large intracranial arteries and veins.
Figure 6: Intracranial 4D Flow MRI for the assessment of arterial and venous cerebrovascular hemodynamics. 3D blood flow visualization using time-integrated 3D pathlines in a 29-year-old male patient with a large unruptured AVM centered in the right mesial temporal lobe with compact nidus prior to treatment (6A) and following invasive staged embolization therapy (6B: DSA guided endovascular superselective occlusion of AVM feeding arteries with nidal penetration). Complex arterial feeding and convoluted hemodynamics as well as differences in pre- and post-embolization vascularization and hemodynamics are clearly visible. Staged embolization resulted in compaction of the AVM with reduced blood flow velocities (yellow arrows) and reduced flow velocities for venous drainage (white arrow).

However, small and tortuous vessels, complex vascular anatomy and the need for the manual placement of 2D imaging planes in multiple vessel segments represent challenges [34]. In contrast, 4D Flow MRI offers 3D blood flow visualization and retrospective flow quantification with full coverage of cerebral arteries and veins. Emerging applications include the hemodynamic evaluation of intracranial aneurysms, arteriovenous malformations (AVM), and intracranial atherosclerotic disease (ICAD), as well as venous flow. Figure 6 demonstrates the potential of 4D Flow MRI for the evaluation of global and regional AVM flow characteristics and treatment-induced changes in cerebrovascular flow distribution [35, 36]. In patients with cerebral AVMs, the pathological vascularization (direct shunting of blood from arterial to the venous sides without an intervening capillary bed) leads to abnormal hemodynamics. Flow information is potentially valuable for a better understanding of the impact of a focal AVM on the flow redistribution in the brain and/or in treatment planning by attempting to identify the feeding arteries with highest flow, enabling efficient and targeted embolization treatment.

Conclusion

A large number of studies have provided evidence that 4D Flow MRI can help to better understand altered hemodynamics in patients with cardiovascular diseases and may lead to improved patient management and monitoring of therapeutic responses. The novel hemodynamic insights obtained are also likely to provide new risk stratification metrics in patients that have prognostic significance and can also impact individualized treatment decisions to optimize patient outcome. Future research efforts will improve the clinical applicability of 4D Flow MRI and provide results in larger cohort studies.

References

Cardiovascular Imaging

Contact

Michael Markl, Ph.D.
Department of Radiology
Northwestern University
737 N. Michigan Avenue Suite 1600
Chicago, Illinois 60611, USA
Phone: +1 312-695-1799
Fax: +1 312-926-5991
mmarkl@northwestern.edu

Michael Markl
Meet Siemens Healthineers

Our brand name Siemens Healthineers embodies our pioneering spirit and engineering expertise in the healthcare industry. The people working for Siemens Healthineers are highly passionate about providing medical technology that improves your clinical, operational and financial performance, leading also to positive patient experience. With this issue we start to introduce colleagues from all over the world to you – people who put their hearts into what they do.

Christian Geppert graduated in physics from University of Bremen in 2005. After joining Siemens he worked in oncology predevelopment and most recently in PET/MR. Since January 2017 he succeeds Edgar Müller as the head of the MR Cardiovascular Predevelopment Team.

“I have the pleasure of taking over a team of four scientists in Erlangen with many years of experience and renown in the field. I am also in charge of coordinating our global predevelopment projects together with my colleagues in the respective countries. After several years in collaborations – in New York – and in marketing, I am excited to return to the predevelopment field, where I started my career within Siemens.”

How did you first come in contact with MRI?
I started to work in MR back in 2000 during my diploma thesis on spectroscopic imaging and my fascination for MR has never stopped. I remember my first ISMRM 2001 in Glasgow, seeing movies of the beating heart for the first time – I was blown away.

What is most fascinating about MRI?
When my son was in Kindergarten he told his friends that his dad had a machine at work that could see inside the human body – but his friends thought this was impossible.

What I have always loved about my jobs in Siemens is that I have continuously been working with our partners – outstanding researchers as well as leading radiologists – and that I have been involved in identifying innovations, helping them gain maturity and finally clinical acceptance. Even when you have been working in the field of MRI for a while – when you see an exciting new technique come to light for the first time, this is always a great moment.

What do you think are the most important developments in MRI and in Healthcare?
For MRI in general, acceleration and robustness as realized in Compressed Sensing and motion insensitive scanning. For Healthcare in general, I think it is the (slow) rise of evidence-based medicine.

What would you do, if you could do for one month whatever you wanted?
To actually work in a clinical environment for an extended amount of time is something that is extremely helpful. While I had the pleasure to do this at times, given the vast range of partners that we have, you can never have sufficient knowledge about the real life usage of our products. It can be truly eye opening. Outside of work, I would love to spend a month to focus on making music (electronics, guitar), which is something that I usually don’t find the time for.
Christianne Leidecker graduated in Physics from the Friedrich-Alexander University (FAU), Erlangen, Germany in 2000. She then went on to obtain a Ph.D. at the Institute for Medical Physics at the FAU on the topic of automatic exposure control in Computed Tomography. In 2006, she joined Siemens as a Collaboration Manager in the US CT collaboration group based out of Philadelphia. 2010, she returned to Germany to head Global Collaborations for CT. Since July 2016 she has held the position of Head of the Cardiac Functional Team and Central Zone Director in the US MR Collaboration Team in Chicago. In this position, she works closely with our research partners in the US as well as the R&D team in headquarters.

How did you first come in contact with MRI?
Having started my career in medical imaging with CT, MR was, for the longest time, "the other" imaging modality. Every now and then, in discussions with clinicians and physicists, the discussions would turn to MR and this is how it slowly but surely crept its way into my life. To me, it was always fascinating how much we could learn from each other across the different modalities. So when the opportunity opened up to head the US CMR team out of Chicago, I grabbed it!

What is most fascinating about your job?
I have been working “in collaborations” since I left academia and joined Siemens. What fascinates me most about it is the unique opportunity to provide a bridge between clinical researchers and our development teams at Siemens. Working with our luminary partners and our excellent engineers enables us to translate cutting-edge research into products and clinical routine benefiting a large patient population. Innovation has always been a particular strength of Siemens, and collaborating closely with the scientific community has always been a pillar of our innovation strategy. I feel very privileged to be able to contribute.

What would you do, if you could do for one month whatever you wanted?
Well, first and foremost, I would negotiate for 6 weeks and then use this opportunity to do my Scuba Dive Master with my diving friends in Roatan, Honduras. Since my first dive in 2010 I have been fascinated by the peace and quiet and wonders of the underwater world and blowing bubbles became my favorite past time.

If I had one month to spend on my job, I would spend a week each with four different research partners at their institution and/or hospital.

What is most motivating about your job?
While a little hesitant in the beginning because of my CT background, I found it tremendously enriching to translate this to MR and I very much enjoy discussions with all those who are guiding me on this way. Cardiac MR is a fascinating field with tremendous opportunities and I look forward to participating in this development.

Siemens Healthineers – We have the brains to jointly transform the way healthcare is delivered
The entire editorial staff at Charité Campus Buch, HELIOS-Clinics Berlin Buch and at Siemens Healthineers extends their appreciation to all the radiologists, technologists, physicists, experts and scholars who donate their time and energy – without payment – in order to share their expertise with the readers of MAGNETOM Flash.
Siemens Healthineers Publications

Our publications offer the latest information and background for every healthcare field. From the hospital director to the radiological assistant – here, you can quickly find information relevant to your needs.

MAGNETOM Flash
Everything from the world of magnetic resonance imaging.

SOMATOM Sessions
Everything from the world of computed tomography.

Imaging Life
Everything from the world of molecular imaging innovations.

AXIOM Innovations
Everything from the world of interventional radiology, cardiology, and surgery.

Go HYBRID!
Everything from the world of image-guided therapy.

For current and past issues, and to order the magazines, please visit siemens.com/healthcare-magazine

Medical Solutions Online
Innovations and trends in healthcare. The magazine is designed especially for members of hospital management, administration personnel, and heads of medical departments. Read online at: siemens.com/medical-solutions
Yes, I consent to the above information being used for future contact regarding product updates and other important news from Siemens.

Please print clearly!

Please enter your business address (Optional)

MR system used
Country
State
City
Postal Code
Street
Name
Title
Department
Function
Institution

Please include me in your mailing list for the following Siemens Healthcare customer magazine(s):
- MAGNETOM Flash
- SOMATOM Sessions
- AXIOM Innovations
- Imaging Life
- Go HYBRID!

Please stay up to date with the latest information by registering for the following Siemens Healthcare customer magazine(s):
- MAGNETOM Flash
- SOMATOM Sessions
- AXIOM Innovations
- Imaging Life
- Go HYBRID!

E-mail
Subscribe now!

– and get your free copy of future MAGNETOM Flash!

Interesting information from the world of magnetic resonance – gratis to your desk. Send us this postcard, or subscribe online at www.siemens.com/magnetom-world

On account of certain regional limitations of sales rights and service availability, we cannot guarantee that all products included in this brochure are available through the Siemens sales organization worldwide. Availability and packaging may vary by country and is subject to change without prior notice. Some/All of the features and products described herein may not be available in the United States.

The information in this document contains general technical descriptions of specifications and options as well as standard and optional features which do not always have to be present in individual cases, and which may not be commercially available in all countries. Due to regulatory reasons their future availability cannot be guaranteed. Please contact your local Siemens organization for further details.

Siemens reserves the right to modify the design, packaging, specifications, and options described herein without prior notice. Please contact your local Siemens sales representative for the most current information.

Note: Any technical data contained in this document may vary within defined tolerances. Original images always lose a certain amount of detail when reproduced.