Improving Dynamic MR Angiography: Iterative TWIST

Bernd J. Wintersperger¹,²; Luigia D’Errico¹,²; Christoph Forman¹; Jens Wetzl⁴; Michaela Schmidt³; Aurelien F. Stalder³

¹ Department of Medical Imaging, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada
² Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
³ Siemens Healthineers, Erlangen, Germany
⁴ Pattern Recognition Lab, Department of Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany

Introduction

Nowadays, many vascular territories are explored non-invasively for the purpose of diagnosis, therapy planning and surveillance of vascular disease. Invasive catheter angiography is almost exclusively being used during therapy and intervention. However, the benefits of invasive approaches include the ability to visualize dynamics of applied dye and may therefore provide additional information on the potential hemodynamic relevance of vascular disease or stenosis.

In recent years, magnetic resonance angiography (MRA) has become a dominant tool of non-invasive high-resolution delineation of body and peripheral vasculature. With the ever increasing importance of continuous surveillance in genetic aortic disease (e.g. Marfan’s, Ehlers-Danlos, Loeys-Dietz, etc.), the role of MRA developed beyond atherosclerotic disease and focuses more often on a younger population.

Most commonly, outside the brain, contrast-enhanced MRA (CE-MRA) techniques are being employed sampling a high-resolution data set after a contrast agent timing bolus. In order to overcome the limitations of purely static MRA, various techniques such as time-resolved imaging of contrast kinetics (TRICKS) and time-resolved angiography with stochastic trajectories (TWIST) are being employed [1, 2]. The predominant underlying principle of these approaches relates to keyhole imaging with more frequent sampling of central k-space data vs. peripheral k-space data. In addition to commonly applied acceleration techniques (e.g. partial Fourier, parallel imaging, etc.), dynamic CE-MRA also relies on view-sharing for peripheral k-space coverage in order to improve temporal resolution (Figs. 1-2).

Dynamic CE-MRA using TWIST has proven beneficial and successful in the diagnosis of disease across vessel territories from head to toe [3-5]. Besides a direct vascular focus, the relatively high temporal resolution 3D coverage, combined with prominent T1-weighting and background tissue suppression, has been applied to tissue perfusion studies.

In TWIST, sampling of the (1A) complete peripheral k-space (region 'B') can be achieved by the variation of the sampling density (1B-D). With a sampling density of (1B) 33%, the peripheral k-space is subdivided into 3 different samplings, while for sampling densities of (1C) 25% and (1D) 20%, peripheral k-space acquisition requires 4 or 5 different samplings, respectively.

In TWIST, sampling of the (1A) complete peripheral k-space (region 'B') can be achieved by the variation of the sampling density (1B-D). With a sampling density of (1B) 33%, the peripheral k-space is subdivided into 3 different samplings, while for sampling densities of (1C) 25% and (1D) 20%, peripheral k-space acquisition requires 4 or 5 different samplings, respectively.
Dynamic contrast-enhanced MRA with iterative TWIST

With repeated updates of the central k-space data, the dynamic pass of a Gadolinium-based contrast agent (GBCA) can be followed through the vasculature of interest without the need for a timed bolus. However, while the sharing of peripheral k-space data across multiple time points provides an improved update rate of images (apparent ‘temporal resolution’), it also results in a prolongation of the ‘temporal footprint’ of TWIST (Fig. 2). Especially in areas of possible motion and fast blood circulation (e.g. chest, pulmonary vasculature), this may result in inconsistencies, temporal blurring and subsequent image degradation, specifically of small vasculature.

Recent interest in Compressed Sensing approaches successfully demonstrated benefits of these techniques in various MR applications including CE-MRA [6] and dynamic CE-MRA [7, 8]. The potential benefits of such iterative reconstruction approaches have recently been explored in clinical scenarios [8, 9].

Iterative TWIST (IT-TWIST) uses the sampling pattern of a regular TWIST acquisition, but does not rely on view sharing during image reconstruction. Instead, the implemented iterative reconstruction algorithm relies on the intrinsic incoherent sampling pattern of the peripheral k-space data and uses a Compressed Sensing approach with spatial and temporal regularization to suppress artifacts arising from k-space undersampling.

More in detail, the TWIST acquisition consists of interleaved acquisitions of central k-space (region ‘A’) and different incoherent sub-samplings of peripheral k-space (region ‘B’). Regular TWIST reconstruction then combines multiple ‘B’ regions (view sharing) with one ‘A’ region to form a coherently subsampled k-space suitable for parallel imaging reconstruction (see Figures 1, 2).

In contrast, the iterative TWIST reconstruction uses a single region ‘A’ and region ‘B’ pair per time frame, thus decreasing the ‘temporal footprint’ to be identical to the ‘image update rate’ (apparent ‘temporal resolution’) (Fig. 3). To recover the individual time frames despite the higher undersampling, a non-linear iterative SENSE reconstruction is being used. The iterative reconstruction uses spatio-temporal reconstruction based on Haar wavelets [8, 10]. This reconstruction process results in a considerable computational burden and therefore is carried out on the Graphics Processing Unit (GPU) of the standard image reconstruction system. Depending on detailed acquisition parameters and time frames current reconstruction times are about 20 minutes.

1 WIP. IT-TWIST is work in progress and is not commercially available. Future availability cannot be guaranteed.
In order to assess the impact of such improved ‘temporal footprints’ and increased signal-to-noise ratio (SNR) of the CS reconstruction algorithm due to de-noising, we aimed at patients referred for the assessment of the thoracic aorta and the great thoracic vessels. The applied imaging protocol focused on high temporal and spatial resolution [8] (Table 1). All imaging was performed on a 64-channel MAGNETOM SkyraTM system and contrast enhancement for TWIST was provided by automated injection of Gadobutrol (Gadavist, Bayer Pharma, Berlin, Germany) [8]. All acquired raw data sets were reconstructed twice: using the (1) standard product reconstruction as well as the above described (2) IT-TWIST reconstruction.

In all patients, IT-TWIST was equal or superior to TWIST reconstruction; in fact, in the vast majority of cases, image quality as assessed by two readers with respect to aortic contrast-to-noise (CNR), aortic delineation and medium-to-small vessel (pulmonary vasculature) delineation improved by at least 1 point on the Likert scale (0 = non-diagnostic; 1 = poor; 2 = fair; 3 = good; 4 = excellent) [9] (Figs. 4-6). The most prominent improvement with IT-TWIST was seen in the area of medium-to-small vessels of the pulmonary vasculature, which also demonstrated an improvement in the signal response amplitude as compared to TWIST [8] (Figs. 4-6).

Table 1: Imaging protocol

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>pulm. vasc. delineation (MIP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4 -3 -2 -1 0 1 2 3 4</td>
<td>0 2 4 6 8 10</td>
</tr>
</tbody>
</table>

Selection of imaging parameters of the applied TWIST acquisition. Contrast enhancement was provided by injection of 8 ml of (1:3) diluted (saline) gadolinium based contrast agent.

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>Aortic contrast-to-noise (MIP)</th>
<th>Aortic delineation (source)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4 -3 -2 -1 0 1 2 3 4</td>
<td>0 2 4 6 8 10</td>
<td>0 2 4 6 8 10</td>
</tr>
</tbody>
</table>

Table 4

References

Example of a patient with large patch aneurysm after repair of aortic coarctation (COA) in childhood with identical time point images displayed for standard TWIST and iterative TWIST. Iterative TWIST demonstrates much better delineation of small-to-midsize pulmonary vessels (5A), as well as lower noise levels in (5B) aortic MIP reconstructions as well as in (5C) thin source image data.

In a patient with suspicion of a dilated ascending aorta the iterative TWIST again demonstrates a much improved delineation of the (6A) pulmonary vasculature and (6B) lower noise levels for the aorta on MIP reconstruction.

