18F-FDG PET/MR: Its Incremental Value in Assessing the Multiple Myeloma Patient

Jorge Oldan, M.D.; Hakan Ilaslan, M.D.; Shetal N. Shah, M.D.

Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA

Case summary
A 68-year-old female with previously serologically well-controlled IgG kappa, CD 20 positive multiple myeloma with lymphoplasmacytic morphology, on carfilzomib, prednisone, and pomalidomide, presented for follow-up. She complained of back, rib, and right hip pain, which appeared related to exercise, included muscle cramping, and had increased over the past few months. As there was concern this might signify refractory asecretory clones, a PET/MR scan was obtained to evaluate disease extent.

Imaging findings
Simultaneous Fludeoxyglucose F18 (18F-FDG) PET/MR scan from skull vertex to thighs including axial HASTE, T1-weighted FLASH, coronal T2w TSE and sagittal T2 of the spine was obtained. There is diffuse, abnormal heterogeneous bone marrow signal throughout the spine, pelvis, and proximal femurs with increased 18F-FDG uptake with SUVmax of up to 4.4 in a 1.6 x 1.2 cm iliac lesion. There are multiple focal rib lesions as well (up to SUVmax 5.6 and 3 x 1.4 cm), and a 1.7 cm lesion within the right posterior L1 elements (SUVmax 5.2).

The spine in particular is diffusely T1-hypointense, with a heterogeneous appearance on T2-weighted images and focal areas of increased 18F-FDG uptake corresponding to areas of increased T2 signal. In addition, there is a solitary 1 cm hypermetabolic lesion in hepatic segment V (SUVmax 3.0) with mildly T1 and T2 hyperintense liver in the background of a diffuse T2 hypointense liver due to hemochromatosis.

Diagnosis
Multiple myeloma with diffuse involvement of the axial bone marrow and extra-medullary spread to the liver (confirmed by liver biopsy).

Discussion and conclusion
Our case demonstrates the diffuse variety of multiple myeloma within the axial skeleton as well as extra-medullary spread on 18F-FDG PET/MR. With this evidence of progression, prednisone was increased to her current regimen and rituximab added. Her disease continued to progress while on therapy, and she underwent palliative radiotherapy to sites of pain and had further chemotherapy. The patient eventually progressed clinically and died in less than a year after the scan was completed.

Multiple myeloma is a neoplasm resulting from monoclonal proliferation of mature plasma cells. It is relatively rare, representing 1.4% of all new cancer cases in the U.S., although it is the second most common hematologic malignancy after non-Hodgkin’s lymphoma and the most common primary osseous malignancy in the elderly, with incidence of 24,050 and mortality of 11,090 in 2014 [1]. It presents with anemia (most common), bone pain, renal insufficiency, fatigue, hypercalcemia, and/or weight loss, and evolves from an asymptomatic malignant condition known as MGUS (monoclonal gammopathy of undetermined significance) at a rate of 1% per year [2]. 5-year survival rate remains low at 44.9% [1].

While one of the predominant staging systems for multiple myeloma (the Durie-Salmon Staging system or ‘DS’) assessed osseous involvement by plain radiography (along with serologic markers like hemoglobin, serum calcium, and serum and urine M protein), the revised ‘DS Plus’ incorporates the number of focal lesions over 5 mm in size as well as the distribution of the disease pattern (diffuse, focal, or variegated) based on MR or PET/CT [3] (Table 1).

Table 1: Durie-Salmon Plus (DS Plus) staging system

<table>
<thead>
<tr>
<th>Durie-Salmon</th>
<th>PET/MR # of lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: Hgb > 10 g/dL AND serum Ca < 10.5 mg/dL AND normal skeletal radiographs or solitary bone plasmacytoma AND low M-component production rates (IgG < 5 g/dL, IgA < 3 g/dL) AND urine light chain M-component on electrophoresis < 4 g/24h</td>
<td>0–4</td>
</tr>
<tr>
<td>II: Fitting neither Stage I or Stage III</td>
<td>5–20</td>
</tr>
<tr>
<td>III: Hgb < 8.5 g/dL OR Serum Ca > 12 mg/dL OR Advanced lytic bone lesions OR High M-component production rates (IgG > 7 g/dL, IgA > 5 g/dL) OR Bence Jones Protein > 12g/24h</td>
<td>>20</td>
</tr>
<tr>
<td>B: Cr > 2.0 mg/dL</td>
<td>B: Cr > 2 and/or EMD on PET OR MRI</td>
</tr>
</tbody>
</table>

The stage I, II, or III may have an A or B modifier, B if the criteria for B (Cr >2 or extramedullary disease on PET or MRI) are met.

The full prescribing information for the Fludeoxyglucose F18 injection can be found at page 91.
Presently, the International Myeloma Working Group states that PET can be used to confirm MGUS (which is PET negative) or exclude unsuspected and/or extramedullary myeloma (which would be PET positive), infection, and/or another malignancy [4]; it can also be used for therapy response assessment [5]. Because 18F-FDG PET has been described as having limitation to assess diffuse spine involvement with false-positives with accompanying inflammation or infection, deposits of brown fat, postsurgical and vertebroplasty changes, or due to other malignancies [6], the addition of MR has proved valuable.

On radiography, multiple myeloma classically appears as ‘punched-out’ lytic lesions in the bones without surrounding reactive changes, or less commonly as diffuse osteopenia. Since between 10% and 20% of multiple myeloma patients have normal radiographs [7], MRI is useful in patients with classic symptoms and normal radiographs [8], and can detect complications such as cord compression, identifying size, level, and extent of tumor mass [2]. The pattern of marrow involvement on MRI can be described as focal, diffuse, or variegated [9], with a diffuse pattern correlating with a shorter survival time compared with focal or variegated [2]. In addition to detecting early bone involvement, 18F-FDG can detect extramedullary disease and provides prognostic information. For example, a target lesion with SUV_{max} over 4.2 at baseline is a poor prognostic factor, and SUV_{max} over 3.5 correlates with increased risk of fracture [2]. 18F-FDG PET can also assess treatment response [2] after chemotherapy or autologous stem cell treatment. Whereas PET/CT is more effective at detecting extramedullary disease, MRI is more sensitive in the marrow and has an overall increased contrast resolution in the viscera [2]; thus the potential for substantial synergy using PET/MR exists.

In our case, 18F-FDG PET/MR detected both diffuse axial marrow involvement and extramedullary disease using PET/MR, finding a cause for the patient’s bone pain and, unfortunately, an effective indicator of the patient’s poor prognosis, including liver involvement and an SUV_{max} of 5.6 in a target lesion.

PET/MR allows for one-stop evaluation of multiple myeloma patients using both advanced imaging modalities, and allows for close correlation of the findings on each – we were able to note 18F-FDG activity of the liver lesion, and identify 18F-FDG-avid marrow lesions corresponding to areas of marrow abnormality.

1 Fused 18F-FDG-T1-weighted (1A), T1-weighted (1B), and T2-weighted HASTE (1C) MR images through the liver, demonstrating the 1 cm 18F-FDG-avid (SUV_{max} 3.0) liver lesion in hepatic segment V (white arrows). Note the diffuse low intensity on T1 and T2 signal of the liver from hemochromatosis.

2 Axial T1-weighted (2A), fused axial 18F-FDG-T2-weighted (2B), and axial T2-weighted (2C) MR images through the pelvis. Abnormal foci of marrow signal corresponding to areas of increased 18F-FDG uptake (largest 1.6 x 1.1 cm, SUV_{max} 4.4) (white arrows). Myeloma deposits are more typically dark on T1, although in this patient hemochromatosis may have resulted in a dark marrow signal.
3 Fused sagittal 18F-FDG-STIR (3A), STIR (3B), T2-weighted (3C), and T1-weighted (3D) MR images. Note that the marrow has a heterogeneous appearance and is generally dark on both T1 and T2-weighted images (again, likely due to hemochromatosis), but areas of increased uptake (in particular the deposit in T12 vertebra) correspond to areas of increased signal intensity (white arrows).

4 Sagittal fused 18F-FDG-STIR (4A), fat saturated T2-weighted (4B), axial fused 18F-FDG-HASTE (4C) and axial HASTE (4D) MR images demonstrate the involvement of the posterior right T1 elements (white arrows). Note that while the disease is not well seen on axial images, PET/MR registration (always better with simultaneously acquired images such as these) allows for precise localization nevertheless.

References
4. IMWG Criteria for the Diagnosis of Myeloma and Guidelines for the Diagnostic Work-Up of Myeloma. International Myeloma Foundation. https://myeloma.org/ArticlePage.action?tabId=0&menuId=0&articleId=29708&Tab=18&parentTypeId=18&parentId=18&parentType=tag&gParentType=tag&gParentId=18&parentIndexPageId=284. Accessed April 2, 2015.

Contact
Shetal N. Shah, M.D.
Cleveland Clinic Main Campus
Diagnostic Radiology / Nuclear Medicine
Mail Code JB3
9500 Euclid Avenue
Cleveland, OH 44195
USA
Phone: +1 216.445.8168
FULL PRESCRIBING INFORMATION: CONTENTS*

1 INDICATIONS AND USAGE
1.1 Oncology
1.2 Cardiology
1.3 Neurology
2 DOSAGE AND ADMINISTRATION
2.1 Recommended Dose for Adults
2.2 Recommended Dose for Pediatric Patients
2.3 Patient Preparation
2.4 Radiation Dosimetry
2.5 Radiation Safety
2.6 Drug Preparation and Administration
2.7 Imaging Guidelines
3 DOSAGE FORMS AND STRENGTHS
4 CONTRAINDICATIONS
5 WARNINGS AND PRECAUTIONS
6 ADVERSE REACTIONS
7 DRUG INTERACTIONS
8 USE IN SPECIFIC POPULATIONS
9 REPRODUCTIVE TOXICITY
10 NONCLINICAL TOXICOLOGY
11 DESCRIPTION
11.1 Chemical Characteristics
11.2 Physical Characteristics
12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
12.2 Pharmacodynamics
12.3 Pharmacokinetics
13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
14 CLINICAL STUDIES
14.1 Oncology
14.2 Cardiology
14.3 Neurology
15 CLINICAL PHENOMENA
16 HOW SUPPLIED/STORAGE AND DRUG HANDLING
17 PATIENT COUNSELING INFORMATION

FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE
Fludeoxyglucose F 18 Injection is indicated for positron emission tomography (PET) imaging in the following settings:

1.1 Oncology
For assessment of abnormal glucose metabolism to assist in the evaluation of malignancy in patients with known or suspected abnormalities found by other testing modalities, or in patients with an existing diagnosis of cancer.

1.2 Cardiology
For the identification of left ventricular myocardium with residual glucose metabolism and reversible loss of systolic function in patients with coronary artery disease and left ventricular dysfunction, when used together with myocardial perfusion imaging.

1.3 Neurology
For the identification of regions of abnormal glucose metabolism associated with foci of epileptic seizures.

2 DOSAGE AND ADMINISTRATION
Fludeoxyglucose F 18 Injection is indicated for positron emission tomography (PET) imaging in the following settings:

2.1 Recommended Dose for Adults
For the oncology, cardiology, and neurology settings, the recommended dose for adults is 5 to 10 mCi (185 to 370 MBq) as an intravenous injection.

2.2 Recommended Dose for Pediatric Patients
In the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection.

3 DOSAGE FORMS AND STRENGTHS
Multi-dose 30mL and 50mL glass vial for Fludeoxyglucose F 18 Injection safely and effectively facilitates localization of cardiac ischemia (2.3). Fludeoxyglucose F 18 Injection is indicated for positron emission tomography (PET) imaging in the following settings:

4 CONTRAINDICATIONS
5 WARNINGS AND PRECAUTIONS
6 ADVERSE REACTIONS
7 DRUG INTERACTIONS
8 USE IN SPECIFIC POPULATIONS
9 REPRODUCTIVE TOXICITY
10 NONCLINICAL TOXICOLOGY
11 DESCRIPTION
11.1 Chemical Characteristics
11.2 Physical Characteristics
12 CLINICAL PHARMACOLOGY
12.1 Mechanism of Action
12.2 Pharmacodynamics
12.3 Pharmacokinetics
13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
14 CLINICAL STUDIES
14.1 Oncology
14.2 Cardiology
14.3 Neurology
15 CLINICAL PHENOMENA
16 HOW SUPPLIED/STORAGE AND DRUG HANDLING
17 PATIENT COUNSELING INFORMATION

FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE
Fludeoxyglucose F 18 Injection is indicated for positron emission tomography (PET) imaging in the following settings:

1.1 Oncology
For assessment of abnormal glucose metabolism to assist in the evaluation of malignancy in patients with known or suspected abnormalities found by other testing modalities, or in patients with an existing diagnosis of cancer.

The recommended dose:

- For adults is 5 to 10 mCi (185 to 370 MBq), in all indicated clinical settings (2.1).

- For pediatric patients is 2.6 mCi in the neurology setting (2.2).

Initiate imaging within 40 minutes following drug injection, acquire static emission images 30 to 100 minutes from time of injection (2).
Fludeoxyglucose F 18 Injection, USP

2.5 Radiation Safety – Drug Handling

- Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F 18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons.
- Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides.
- Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient (see Description (11.2)).
- The dose of Fludeoxyglucose F 18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed.

2.6 Drug Preparation and Administration

- Calculate the necessary volume to administer based on calibration time and dose.
- Aseptically withdraw Fludeoxyglucose F 18 Injection from its container.
- Inspect Fludeoxyglucose F 18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit.
- Do not administer Fludeoxyglucose F 18 Injection to the patient, occupational workers, clinical personnel and other persons.

2.7 Patients Undergoing PET Imaging

- Initiate imaging within 40 minutes following Fludeoxyglucose F 18 Injection administration.
- Acquire static emission images 30 to 100 minutes from the time of injection.

3 DOSAGE FORMS AND STRENGTHS

Fludeoxyglucose F 18 Injection is provided as a ready to use sterile, pyrogen free, clear, colorless solution. Each mL contains 0.22 to 0.25 mCi of Fludeoxyglucose F 18 (2.5 to 20 mL volume) for intravenous administration.

4 CONTRAINDICATIONS

None.

5 WARNINGS AND PRECAUTIONS

5.1 Radiation Risks

Radiation-emitting products, including Fludeoxyglucose F 18 Injection, may increase the risk for cancer, especially in pediatric patients. Use the smallest dose necessary for imaging and ensure safe handling to protect the patient and health care worker (see Dosage and Administration (2.5)).

5.2 Blood Glucose Abnormalities

In the oncology and neurology setting, suboptimal imaging may occur in patients with inadequately regulated blood glucose levels. In these patients, consider medical therapy and laboratory testing to assure at least two days of normoglycemia prior to Fludeoxyglucose F 18 Injection administration.

6 ADVERSE REACTIONS

Hypersensitivity reactions with pruritus, edema and rash have been reported in the post-marketing setting. Have emergency resuscitation equipment and personnel immediately available.

7 DRUG INTERACTIONS

The possibility of interactions of Fludeoxyglucose F 18 Injection with other drugs taken by patients undergoing PET imaging has not been studied.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Category C

Animal reproduction studies have not been conducted with Fludeoxyglucose F 18 Injection. It is also not known whether Fludeoxyglucose F 18 Injection can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. Consider alternative diagnostic tests in a pregnant woman; administer Fludeoxyglucose F 18 Injection only if clearly needed.

8.3 Nursing Mothers

It is not known whether Fludeoxyglucose F 18 Injection is excreted in human milk. Consider alternative diagnostic tests in women who are breastfeeding. Use alternatives to breastfeeding (e.g., stored breast milk or infant formula) for at least 10 half-lives of radioactive decay, or if Fludeoxyglucose F 18 Injection is administered to a woman who is breastfeeding.

8.4 Pediatric Use

The safety and effectiveness of Fludeoxyglucose F 18 Injection in pediatric patients with epilepsy is established on the basis of studies in adult and pediatric patients. In pediatric patients with epilepsy, the recommended dose is 2.6 mCi. The optimal dose adjustment on the basis of body size or weight has not been determined. In the oncology or cardiology settings, the safety and effectiveness of Fludeoxyglucose F 18 Injection have not been established in pediatric patients.

11 DESCRIPTION

11.1 Chemical Characteristics

Fludeoxyglucose F 18 Injection is a positron emitting radiopharmaceutical that is used for diagnostic purposes in conjunction with positron emission tomography (PET) imaging. The active ingredient 2-deoxy-2-[18F]fluoro-D-glucose has the molecular formula of C12H22F2O11 with a molecular weight of 218.26, and has the following chemical structure:

\[\text{C}12\text{H}22\text{F}2\text{O}11 \]

Fludeoxyglucose F 18 Injection is provided as a ready to use sterile, pyrogen free, clear, colorless solution. Each mL contains between 0.740 to 7.400 mcg (20.0 to 200 mcg) of 2-deoxy-2-[18F]fluoro-D-glucose at the EOS, 4.5 mg of sodium chloride and 0.1 to 0.5% w/v ethanol as a stabilizer. The pH of the solution is between 4.5 and 7.5. The solution is packaged in a multiple-dose glass vial and does not contain any preservative.

11.2 Physical Characteristics

Fluorine F 18 decays by emitting positron to Oxygen O 16 (stable) and has a physical half-life of 109.7 minutes. The principal photons useful for imaging are the dual 511 keV gamma photons, that are produced and emitted simultaneously in opposite directions when the positron interacts with an electron (Table 2).

Table 2. Pricipal Radiation Emission Data for Fluorine F18

<table>
<thead>
<tr>
<th>Radiation/Emission</th>
<th>% Per Disintegration</th>
<th>Mean Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positron (β+)</td>
<td>96.73</td>
<td>249.8 keV</td>
</tr>
<tr>
<td>Gamma (γ)*</td>
<td>193.46</td>
<td>511.0 keV</td>
</tr>
</tbody>
</table>

*Produced by positron annihilation From: Kocher, D. C. Radioactive Decay Tables DOE/IDC 1026, 89 (1981)

The specific gamma ray constant (point source air kerma coefficient) for fluorine F 18 is 5.7 ± 0.1 mGy/MBq/mL at 1 cm. The half-value layer (HVL) for the 511 keV photons is 4 mm lead (Pb). The range of attenuation coefficients for this radionuclide as a function of lead shield thickness is shown in Table 3. For example, the interpolation of an 8 mm thickness of Pb, with a coefficient of attenuation of 0.25, will decrease the external radiation by 75%.

Table 3. Radiation Attenuation of 511 keV Photons by lead (Pb) shielding

<table>
<thead>
<tr>
<th>Shield thickness (Pb) mm</th>
<th>Coefficient of attenuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.50</td>
</tr>
<tr>
<td>8</td>
<td>0.25</td>
</tr>
<tr>
<td>13</td>
<td>0.10</td>
</tr>
<tr>
<td>26</td>
<td>0.01</td>
</tr>
<tr>
<td>39</td>
<td>0.001</td>
</tr>
<tr>
<td>52</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

For use in correcting for physical decay of this radionuclide, the fractions remaining at selected intervals after administration are shown in Table 4.

Table 4. Physical Decay Chart for Fluorine F18

<table>
<thead>
<tr>
<th>Minutes</th>
<th>Fraction Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.000</td>
</tr>
<tr>
<td>15</td>
<td>0.909</td>
</tr>
<tr>
<td>30</td>
<td>0.826</td>
</tr>
<tr>
<td>60</td>
<td>0.683</td>
</tr>
<tr>
<td>110</td>
<td>0.500</td>
</tr>
<tr>
<td>220</td>
<td>0.250</td>
</tr>
</tbody>
</table>

*calibration time

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Fludeoxyglucose F 18 is a glucose analog that concentrates in cells that rely upon glucose as an energy source, or in cells whose dependence on glucose increases under pathophysiological conditions. Fludeoxyglucose F 18 is transported through the cell membrane by facilitative glucose transporter proteins and is phosphorylated within the cell to [18F] FDG-6-phosphate by the enzyme hexokinase. Once phosphorylated it cannot exit until it is dephosphorylated by glucose-6-phosphatase. Therefore, within a given tissue or pathophysiological process, the retention and clearance of Fludeoxyglucose F 18 reflect a balance involving glucose transporter, hexokinase and glucose-6-phosphatase activities. When allowance is made for the kinetic differences between glucose and Fludeoxyglucose F 18 transport and phosphorylation (expressed as the ‘lumped constant’ ratio), Fludeoxyglucose F 18 is used to assess glucose metabolism. In comparison to background activity of the specific organ or tissue type, regions of decreased or absent uptake of Fludeoxyglucose F 18 reflect the decrease or absence of glucose metabolism. Regions of increased uptake of Fludeoxyglucose F 18 reflect greater than normal rates of glucose metabolism.

12.2 Pharmacodynamics

Fludeoxyglucose F 18 Injection is rapidly distributed to all organs of the body after intravenous administration. After background clearance of Fludeoxyglucose F 18 Injection, optimal PET imaging is generally achieved between 30 to 40 minutes after administration.

In cancer, the cells are generally characterized by enhanced glucose metabolism partially due to (1) an increase in activity of glucose transporters, (2) an increased rate of phosphorylation activity, (3) a reduction of phosphatase activity, or, (4) a dynamic alteration in the balance among all these processes. However, glucose metabolism of cancer as reflected by Fludeoxyglucose F 18 accumulation shows considerable variability. Depending on tumor type, stage, and location, Fludeoxyglucose F 18 accumulation may be increased, normal, or decreased. Also, inflammatory cells can have the same variability of uptake of Fludeoxyglucose F 18.

In the heart, under normal aerobic conditions, the myocardium meets the bulk of its energy requirements by oxidizing free fatty acids. Most of the exogenous glucose taken up by the myocyte is metabolized immediately instead of being converted into glycogen. Under these conditions, phosphorylated Fludeoxyglucose F 18 accumulates in the myocyte and can be detected with PET imaging.
In the brain, cells normally rely on aerobic metabolism. In epilepsy, the glucose metabolism varies. Generally, during a seizure, glucose metabolism increases. Intercurrently, the seizure focus tends to be hypometabolic.

12.3 Pharmacokinetics

Distribution: In four healthy male volunteers, receiving an intravenous administration of 30 seconds in duration, the arterial blood level profile for Fludeoxyglucose F 18 decreased triexponentially. The effective half-life ranges of the three phases were 0.2 to 0.3 minutes, 10 to 13 minutes with a mean and standard deviation (STD) of 11.6 (±) 1.1 min, and 80 to 95 minutes with a mean and STD of 88 (±) 4 min. Plasma protein binding of Fludeoxyglucose F 18 has not been studied.

Metabolism: Fludeoxyglucose F 18 is transported into cells and phosphorylated to [F18]FDG-6-phosphate at a rate proportional to the rate of glucose utilization within that tissue. [F18]FDG-6-phosphate is presumably metabolized to 2-deoxy-2-[F18]fluoro-6-phospho-D-mannose (FDG-6-phosphate). Fludeoxyglucose F 18 Injection may contain several impurities (e.g., 2-deoxy-2-chloro-D-glucose (CDG)). Biodistribution and metabolism of CDG are presumed to be similar to Fludeoxyglucose F 18 and would be expected to result in intracellular formation of 2-deoxy-2-chloro-6-phospho-D-glucose (CDG-6-phosphate) and 2-deoxy-2-chloro-6-phospho-D-mannose (CDM-6-phosphate). The phosphorylated deoxyglucose compounds are dephosphorylated and the resulting compounds (FDG, FDG, CDG, and CDM) presumably leave cells by passive diffusion. Fludeoxyglucose F 18 and related compounds are cleared from non-cardiac tissues within 3 to 24 hours after administration. Clearance from the cardiac tissue may require more than 96 hours. Fludeoxyglucose F 18 that is not involved in glucose metabolism in any tissue is then excreted in the urine.

Elimination: Fludeoxyglucose F 18 is cleared from most tissues within 24 hours and can be eliminated from the body unchanged in the urine. Three elimination phases have been identified in the reviewed literature. Within 33 minutes, a mean of 3.9% of the administered radioactive dose was measured in the urine. The amount of radiation exposure of the urinary bladder at two hours post-administration suggests that 20.6% (mean) of the radioactive dose was present in the bladder.

Speciﬁc Pathology

The pharmacokinetics of Fludeoxyglucose F 18 Injection have not been studied in renaally impaired, heparatically impaired or pediatric patients. Fludeoxyglucose F 18 is eliminated through the renal system. Avoid excessive radiation exposure to this organ system and adjacent tissues.

The effects of fasting, varying blood sugar levels, conditions of glucose intolerance, and diabetics mellitus on Fludeoxyglucose F 18 distribution in humans have not been ascertained [see Warnings and Precautions (5.2)].

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Animal studies have not been performed to evaluate the Fludeoxyglucose F 18 Injection carcinogenic potential, mutagenic potential or effects on fertility.

14 CLINICAL STUDIES

Oncology

The efficacy of Fludeoxyglucose F 18 Injection in positron emission tomography cancer imaging was demonstrated in 16 independent studies. These studies prospectively evaluated the use of Fludeoxyglucose F 18 in patients with suspected or known malignancies, including non-small cell lung cancer, colon-rectal, pancreatic, breast, thyroid, melanoma, Hodgkin’s and non-Hodgkin’s lymphoma, and various types of metastatic cancers to lung, liver, bone, and axillary nodes. All these studies had at least 50 patients and used pathology as a standard of truth. The Fludeoxyglucose F 18 Injection doses in the studies ranged from 200 MBq to 740 MBq with a median and mean dose of 370 MBq.

In the studies, the diagnostic performance of Fludeoxyglucose F 18 Injection varied with the type of cancer, size of cancer, and other clinical conditions. False negative and false positive scans were observed. Negative Fludeoxyglucose F 18 Injection PET scans do not exclude the diagnosis of cancer. Positive Fludeoxyglucose F 18 Injection PET scans cannot replace pathology to establish a diagnosis of cancer. Non-malignant conditions such as fungal infections, inflammatory processes and benign tumors have patterns of increased glucose metabolism that may give rise to false-positive scans. The efficacy of Fludeoxyglucose F 18 Injection PET imaging in cancer screening was not studied.

14.2 Cardiology

The efficacy of Fludeoxyglucose F 18 Injection for cardiac use was demonstrated in 10 independent, prospective studies of patients with coronary artery disease and chronic left ventricular systolic dysfunction who were scheduled to undergo coronary revascularization. Before revascularization, patients underwent PET imaging with Fludeoxyglucose F 18 Injection (74 to 370 MBq, 2 to 10 mCi) and perfusion imaging with other diagnostic imaging. Before revascularization, patients underwent PET imaging with Fludeoxyglucose F 18 Injection in the range of 185 to 370 MBq (5 to 10 mCi). The mean age was 16.4 years (range: 4 months to 58 years; of these, 42 patients were less than 12 years and 16 patients were less than 2 years old). Patients had a known diagnosis of complex partial epilepsy and were under evaluation for surgical treatment of their seizure disorder. Seizure focci had been previously identified on ictal EEGs and sphenoidal EEGs. Fludeoxyglucose F 18 Injection PET imaging confirmed previous diagnostic findings in 16% (14/87) of the patients; in 34% (30/87) of the patients, Fludeoxyglucose F 18 Injection PET images provided new findings. In 32% (27/87), imaging with Fludeoxyglucose F 18 Injection was inconclusive. The impact of these imaging findings on clinical outcomes is not known.

Several other studies comparing imaging with Fludeoxyglucose F 18 Injection results to subependimal EEG, MRI and/or surgical findings supported the concept that the degree of hypometabolism corresponds to areas of confirmed epileptogenic foci. The safety and radiopharmaceutical characteristics of Fludeoxyglucose F 18 Injection were distinguished from other positron glucose (ClDG)). Biodistribution and metabolism of ClDG are presumed to be similar to Fludeoxyglucose F 18. Metabolism of ClDG includes glucuronidation and deamination, followed by excretion in the urine. Metabolism of ClDG includes glucuronidation and deamination, followed by excretion in the urine. Metabolism of ClDG includes glucuronidation and deamination, followed by excretion in the urine. Metabolism of ClDG includes glucuronidation and deamination, followed by excretion in the urine. Metabolism of ClDG includes glucuronidation and deamination, followed by excretion in the urine.

15 REFERENCES

4. ICRP Publication 53, Volume 18, No. 1,1987, pages 75-76.

16 HOW SUPPLIED/STORAGE AND DRUG HANDLING

Fludeoxyglucose F 18 Injection is supplied in a multi-dose, capped 30 mL and 50 mL glass vial containing between 0.740 to 7.40 Gbq/mL (20 to 200 mCi/mL), of no carrier added 2-deoxy-2-[F18] fluoro-D-glucose, at end of synthesis, in approximately 15 to 50 mL. The contents of each vial are sterile, pyrogen-free and preservative-free.

NDC 40028-511-30; 40028-511-50

Receipt, transfer, handling, possession, or use of this product is subject to the radioactive material regulations and licensing requirements of the U.S. Nuclear Regulatory Commission, Agreement States or Licensing States as appropriate. Store the Fludeoxyglucose F 18 Injection vial upright in a lead shielded container at 25°C (± 15°C); excursions permitted up to 30°C (± 5°C) for not more than 56 days.

PETNET Solutions

Manufactured by: PETNET Solutions Inc.
810 Innovation Drive
Knoxville, TN 37932

Distributed by: PETNET Solutions Inc.
810 Innovation Drive
Knoxville, TN 37932

Indications Fludeoxyglucose F Injection is indicated for positron emission tomography (PET) imaging in the following settings:

Oncology: For the localization of abnormal glucose metabolism to assist in the evaluation of malignancy in patients with known or suspected abnormalities found by other testing modalities, or in patients with an existing diagnosis of cancer.

Cardiology: For the identification of left ventricular myocardium with residual glucose metabolism and reversible loss of systolic function in patients with coronary artery disease and left ventricular dysfunction, when used together with myocardial perfusion imaging.

Neurology: For the identification of regions of abnormal glucose metabolism associated with foci of epileptic seizures.

Important Safety Information

Radionuclide: Radiation-emitting products, including Fludeoxyglucose F Injection, may increase the risk for cancer, especially in pediatric patients. Use the smallest dose necessary for imaging and ensure safe handling to protect the patient and healthcare worker.

Blood Glucose Abnormalities: In the oncology and neurology setting, suboptimal imaging may occur in patients with inadequately regulated blood glucose levels. In these patients, consider medical therapy and/or laboratory testing to assure at least two days of normoglycemia prior to Fludeoxyglucose F Injection administration.

Adverse Reactions: Hypersensitivity reactions with pruritus, edema and rash have been reported; have emergency resuscitation equipment and personnel immediately available.