The value of PET/CT in initial staging and subsequent treatment strategy for metastatic breast cancer

By Dustin Osborne, PhD, and Yong Bradley, MD, University of Tennessee, Knoxville, TN, USA
Data courtesy of University of Tennessee Medical Center, Knoxville, TN, USA

History

A 53-year-old female presented with complaint of back pain. X-rays revealed incidental findings of left breast mass. Patient had a history of smoking and no family history of breast cancer. Mammography revealed a 4 cm x 3.5 cm mass in the left breast and enlarged axillary nodes. Fine needle aspiration cytology (FNAC) of the breast mass showed poorly differentiated infiltrating ductal carcinoma. The patient was referred for PET/CT imaging for initial treatment strategy.

Findings

The PET/CT exam for initial treatment strategy revealed hypermetabolic foci in the left breast that were consistent with known malignancy. In addition, multiple intense hyper-metabolic foci in the left axilla were compatible with metastatic lymph-adenopathy and multiple hyper-metabolic foci involving the bony skeleton were suspicious for osseous metastases (see Figure 1). The patient opted for breast conservation and was given hormonal treatment only.
Fludeoxyglucose F 18 Injection

INDICATIONS AND USAGE

Fludeoxyglucose F 18 Injection is indicated for positron emission tomography (PET) imaging in the following settings:
- **Oncology:** For assessment of abnormal glucose metabolism to assist in the evaluation of malignancy in patients with known or suspected abnormalities found by other testing modalities, or in patients with an existing diagnosis of cancer.
- **Cardiology:** For the identification of left ventricular myocardium with residual glucose metabolism and reversible loss of systolic function in patients with coronary artery disease and left ventricular dysfunction, when used together with myocardial perfusion imaging.
- **Neurology:** For the identification of regions of abnormal glucose metabolism associated with foci of epileptic seizures.

IMPORTANT SAFETY INFORMATION

- **Radiation Risks:** Radiation-emitting products, including Fludeoxyglucose F 18 Injection, may increase the risk for cancer, especially in pediatric patients. Use the smallest dose necessary for imaging and ensure safe handling to protect the patient and health care worker.
- **Blood Glucose Abnormalities:** In the oncology and neurology setting, suboptimal imaging may occur in patients with inadequately regulated blood glucose levels. In these patients, consider medical therapy and laboratory testing to assure at least two days of normoglycemia prior to Fludeoxyglucose F 18 Injection administration.
- **Adverse Reactions:** Hypersensitivity reactions with pruritus, edema and rash have been reported; have emergency resuscitation equipment and personnel immediately available.

DOSAGE FORMS AND STRENGTHS

Multiple-dose 30 mL and 50 mL glass vial containing 0.74 to 7.40 GBq/mL (20 to 200 mCi/mL) of Fludeoxyglucose F 18 Injection and 4.5 mg of sodium chloride with 0.1 to 0.5% w/w ethanol as a stabilizer (approximately 15 to 50 mL volume) for intravenous administration.

Fludeoxyglucose F 18 Injection is manufactured by PETNET Solutions, a Siemens Healthineers Company, 810 Innovation Drive, Knoxville, TN 39732.

Conclusion

PET/CT plays an important role in the initial staging as well as in the follow-up of breast carcinoma. In this case, the initial PET/CT study identified tracer avid metastases in the axilla as well as the distal skeleton, which put the patient into an advanced stage. A therapeutic approach including mastectomy with axillary nodal clearance, chemotherapy, and radiotherapy as well as hormone replacement therapy based on ER/PR status is an approach in patients in advanced stage breast cancer.

Approximately 3 years later, the patient fractured her tibia. CT imaging revealed bone metastases of the chest, abdomen, and pelvis. A PET/CT was performed (see Figure 2) and this scan was compared to the initial scan with findings consistent of metastatic disease. The PET/CT used for subsequent treatment strategy revealed a worsening mesenteric and peripancreatic adenopathy along with progression of bony metastases. Suspicion for primary colon neoplasm was noted versus metastatic disease. Colonoscopy was recommended for further evaluation.

Supraclavicular and mediastinal lymph nodal metastatic adenopathy was unchanged. In view of the progressive metastatic disease, palliative radiotherapy was advised with a focus on reducing bone pain.

2 Whole-body PET/CT scan performed 3 years after initial diagnosis reveals wide-spread metastatic disease.
Examination protocol

<table>
<thead>
<tr>
<th>Scan dose</th>
<th>10.1 mCi 18F FDG*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptake time</td>
<td>90 minutes</td>
</tr>
<tr>
<td>Parameters</td>
<td>6 beds / 2 min per bed</td>
</tr>
<tr>
<td>Acquisition</td>
<td>400 x 400 matrix ultraHD•PET reconstruction</td>
</tr>
<tr>
<td>PET</td>
<td>3 iterations / 8 subsets, 5 filters</td>
</tr>
<tr>
<td>CT</td>
<td>120 kV, 250 mAs with Care Dose4D™ 1.5 pitch</td>
</tr>
</tbody>
</table>

* Important safety information on Fludeoxyglucose F 18 injection can be found on page 2. The full prescribing information can be found on pages 4-6.

The outcomes achieved by the Siemens customers described herein were achieved in the customer’s unique setting. Since there is no “typical” hospital and many variables exist (e.g. hospital size, case mix, level of IT adoption) there can be no guarantee that others will achieve the same results.
INDICATIONS AND USAGE
Fludeoxyglucose F 18 Injection is indicated for positron emission tomography (PET) imaging in the following settings:

- Oncology: For assessment of abnormal glucose metabolism to assist in the evaluation of malignancy in patients with known or suspected abnormalities found by other testing modalities, or in patients with an existing diagnosis of cancer.

- Cardiology: For the identification of left ventricular myocardium with residual glucose metabolism and reversible loss of systolic function in patients with coronary artery disease and left ventricular dysfunction, when used together with myocardial perfusion imaging.

- Neurology: For the identification of foci of epileptic seizures (1).

- In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 to 75 g) prior to the drug’s injection is necessary for imaging (5.1).

- Blood glucose abnormalities: may cause suboptimal imaging (5.2).

ADVERSE REACTIONS
Hypersensitivity reactions have occurred; have emergency resuscitation equipment and personnel immediately available (6).

To report SUSPECTED ADVERSE REACTIONS...

WARNINGs AND PRECAUTIONs
- Glucose exposure. Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient (see Description (11.2)).

1.1 Oncology
Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instructed patient to fast for 4 to 6 hours prior to the drug’s injection.

1.2 Cardiology
In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 to 75 g) prior to the drug’s injection facilitates localization of cardiac ischemia (2.3).

1.3 Neurology
Aseptically withdraw Fludeoxyglucose F 18 Injection from its container and administer by intravenous injection (2).

2 DOSAGE AND ADMINISTRATION
Fludeoxyglucose F 18 Injection contains Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings. Prior to Fludeoxyglucose F 18 Injection, patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 to 6 hours prior to the drug’s injection. In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 to 75 g) prior to the drug’s injection facilitates localization of cardiac ischemia (2.3).

2.1 Recommended Dose for Adults
- Within the oncology, cardiology and neurology settings, the recommended dose for adults is 5 to 10 mCi (185 to 370 MBq) as an intravenous injection.

2.2 Recommended Dose for Pediatric Patients
- Within the neurology setting, the recommended dose for pediatric patients is 2.6 mCi, as an intravenous injection. The optimal dose adjustment on the basis of body size or weight has not been determined [see Use in Special Populations (8.4)].

2.3 Patient Preparation
- To minimize the radiation absorbed dose to the bladder, encourage adequate hydration. Encourage the patient to drink water or other fluids (as tolerated) in the 4 hours before their PET study.

- Screen patients for clinically significant blood glucose abnormalities by obtaining a history and/or laboratory tests [see Warnings and Precautions (5.2)]. Prior to Fludeoxyglucose F 18 PET imaging in the oncology and neurology settings, instruct patient to fast for 4 to 6 hours prior to the drug’s injection.

- In the cardiology setting, administration of glucose-containing food or liquids (e.g., 50 to 75 g) prior to the drug’s injection facilitates localization of cardiac ischemia (2.3).

2.4 Radiation Dosimetry
The estimated human absorbed radiation doses (rem/MCi) to a newborn (3.4 kg), 1-year-old (9.8 kg), 5-year-old (19 kg), 10-year-old (32 kg), 15-year-old (57 kg), and adult (70 kg) from intravenous administration of Fludeoxyglucose F 18 Injection are shown in Table 1. These estimates were calculated based on human data and using the data published by the International Commission on Radiological Protection (ICRP) for Fludeoxyglucose F 18 F. The dosimetry data show that there are slight variations in absorbed radiation dose for various organs in each of the age groups. These dissimilarities in absorbed radiation dose are due to developmental age variations (e.g., organ size, location, and overall metabolic rate for each age group). The identified critical organs (in descending order) across all age groups evaluated are the urinary bladder, heart, pancreas, spleen, and lungs.

Table 1. Estimated Absorbed Radiation Doses (rem/MCi) After Intravenous Administration of Fludeoxyglucose F 18 Injection

<table>
<thead>
<tr>
<th>Organ</th>
<th>Newborn (3.4 kg)</th>
<th>1-year old (9.8 kg)</th>
<th>5-year old (19 kg)</th>
<th>10-year old (32 kg)</th>
<th>15-year old (57 kg)</th>
<th>Adult (70 kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bladder wall</td>
<td>4.3</td>
<td>1.7</td>
<td>0.93</td>
<td>0.60</td>
<td>0.40</td>
<td>0.32</td>
</tr>
<tr>
<td>Heart wall</td>
<td>2.4</td>
<td>1.2</td>
<td>0.70</td>
<td>0.44</td>
<td>0.29</td>
<td>0.22</td>
</tr>
<tr>
<td>Pancreas</td>
<td>2.2</td>
<td>0.68</td>
<td>0.33</td>
<td>0.25</td>
<td>0.13</td>
<td>0.096</td>
</tr>
<tr>
<td>Spleen</td>
<td>2.2</td>
<td>0.84</td>
<td>0.46</td>
<td>0.29</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.96</td>
<td>0.38</td>
<td>0.20</td>
<td>0.13</td>
<td>0.092</td>
<td>0.064</td>
</tr>
<tr>
<td>Kidneys</td>
<td>0.81</td>
<td>0.34</td>
<td>0.19</td>
<td>0.13</td>
<td>0.089</td>
<td>0.074</td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.80</td>
<td>0.8</td>
<td>0.19</td>
<td>0.11</td>
<td>0.058</td>
<td>0.053</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.79</td>
<td>0.35</td>
<td>0.19</td>
<td>0.12</td>
<td>0.076</td>
<td>0.062</td>
</tr>
<tr>
<td>LLI wall *</td>
<td>0.69</td>
<td>0.28</td>
<td>0.15</td>
<td>0.097</td>
<td>0.060</td>
<td>0.051</td>
</tr>
<tr>
<td>Liver</td>
<td>0.69</td>
<td>0.31</td>
<td>0.17</td>
<td>0.11</td>
<td>0.076</td>
<td>0.058</td>
</tr>
<tr>
<td>Gallbladder wall</td>
<td>0.69</td>
<td>0.26</td>
<td>0.14</td>
<td>0.093</td>
<td>0.057</td>
<td>0.049</td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.68</td>
<td>0.29</td>
<td>0.15</td>
<td>0.096</td>
<td>0.060</td>
<td>0.047</td>
</tr>
<tr>
<td>LLI wall **</td>
<td>0.67</td>
<td>0.27</td>
<td>0.15</td>
<td>0.090</td>
<td>0.057</td>
<td>0.046</td>
</tr>
<tr>
<td>Stomach wall</td>
<td>0.65</td>
<td>0.27</td>
<td>0.14</td>
<td>0.089</td>
<td>0.057</td>
<td>0.047</td>
</tr>
<tr>
<td>Adrenals</td>
<td>0.65</td>
<td>0.28</td>
<td>0.15</td>
<td>0.095</td>
<td>0.061</td>
<td>0.048</td>
</tr>
<tr>
<td>Testes</td>
<td>0.64</td>
<td>0.27</td>
<td>0.14</td>
<td>0.085</td>
<td>0.052</td>
<td>0.041</td>
</tr>
<tr>
<td>Red marrow</td>
<td>0.62</td>
<td>0.26</td>
<td>0.14</td>
<td>0.089</td>
<td>0.057</td>
<td>0.047</td>
</tr>
<tr>
<td>Thymus</td>
<td>0.61</td>
<td>0.26</td>
<td>0.14</td>
<td>0.086</td>
<td>0.056</td>
<td>0.044</td>
</tr>
<tr>
<td>Thyroid</td>
<td>0.61</td>
<td>0.26</td>
<td>0.13</td>
<td>0.080</td>
<td>0.049</td>
<td>0.039</td>
</tr>
<tr>
<td>Muscle</td>
<td>0.58</td>
<td>0.25</td>
<td>0.13</td>
<td>0.078</td>
<td>0.049</td>
<td>0.039</td>
</tr>
<tr>
<td>Bone surface</td>
<td>0.57</td>
<td>0.24</td>
<td>0.12</td>
<td>0.079</td>
<td>0.052</td>
<td>0.041</td>
</tr>
<tr>
<td>Breast</td>
<td>0.54</td>
<td>0.22</td>
<td>0.11</td>
<td>0.068</td>
<td>0.043</td>
<td>0.034</td>
</tr>
<tr>
<td>Skin</td>
<td>0.49</td>
<td>0.20</td>
<td>0.10</td>
<td>0.060</td>
<td>0.037</td>
<td>0.030</td>
</tr>
<tr>
<td>Brain</td>
<td>0.29</td>
<td>0.13</td>
<td>0.09</td>
<td>0.078</td>
<td>0.072</td>
<td>0.070</td>
</tr>
<tr>
<td>Other Tissues</td>
<td>0.59</td>
<td>0.25</td>
<td>0.13</td>
<td>0.083</td>
<td>0.052</td>
<td>0.042</td>
</tr>
</tbody>
</table>

* MRIDOSE 2 software was used to calculate the radiation absorbed dose.

** The dynamic bladder model with a uniform voiding frequency of 1.5 hours was used.

† LLI = lower large intestine, ** LLI = upper large intestine.
Fludeoxyglucose F 18 Injection, USP

1. DESCRIPTION

Fludeoxyglucose F 18 Injection is a positron emitting radiopharmaceutical that is used for diagnostic purposes in conjunction with positron emission tomography (PET) imaging.

2. Radiation Safety – Drug Handling

2.5 Radiation Safety

- Use waterproof gloves, effective radiation shielding, and appropriate safety measures when handling Fludeoxyglucose F 18 Injection to avoid unnecessary radiation exposure to the patient, occupational workers, clinical personnel and other persons.
- Radiopharmaceuticals should be used by or under the control of physicians who are qualified by specific training and experience in the safe use and handling of radionuclides, and whose experience and training have been approved by the appropriate governmental agency authorized to license the use of radionuclides.
- Calculate the final dose from the end of synthesis (EOS) time using proper radioactive decay factors. Assay the final dose in a properly calibrated dose calibrator before administration to the patient [see Dosage and Administration (2.5)].
- The dose of Fludeoxyglucose F 18 used in a given patient should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed.

2.6 Drug Preparation and Administration

- Calculate the necessary volume to administer based on calibration time and dose.
- Aseptically withdraw Fludeoxyglucose F 18 Injection from its container.
- Inspect Fludeoxyglucose F 18 Injection visually for particulate matter and discoloration before administration, whenever solution and container permit.
- Do not administer the drug if it contains particulate matter or discoloration; dispose of these unacceptable or unused preparations in a safe manner, in compliance with applicable regulations.
- Use Fludeoxyglucose F 18 Injection within 12 hours from the EOS.

3. DOSAGE FORMS AND STRENGTHS

- Multiple-dose 30 mL and 50 mL glass vial containing 0.74 to 7.40 GBq/mL (20 to 200 mCi/mL) of Fludeoxyglucose F 18 Injection and 4.5 mg of sodium chloride with 0.1 to 0.5% w/v ethanol as a stabilizer (approximately 15 to 50 mL volume) for intravenous administration.

4. CONTRAINDICATIONS

None.

5. WARNINGS AND PRECAUTIONS

5.1 Radiation Risks

- Radiation-emitting products, including Fludeoxyglucose F 18 Injection, may increase the risk for cancer, especially in pediatric patients. Use the smallest dose necessary for imaging and ensure safe handling to protect the patient and health care worker [see Dosage and Administration (2.5)].

5.2 Blood Glucose Abnormalities

- In the oncology and neurology setting, suboptimal imaging may occur in patients with inadequately regulated blood glucose levels. In these patients, consider medical therapy and laboratory testing to assure at least two days of normoglycemia prior to Fludeoxyglucose F 18 Injection administration.

6. ADVERSE REACTIONS

Hypersensitivity reactions with pruritus, edema and rash have been reported in the postmarketing setting. Have emergency resuscitation equipment and personnel immediately available.

7. DRUG INTERACTIONS

The interactions of Fludeoxyglucose F 18 Injection with other drugs taken by patients undergoing PET imaging has not been studied.

8. USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

Data from published case series and case reports describe Fludeoxyglucose F 18 Injection crossing the placenta with uptake by the fetus (see Data). All radiopharmaceuticals have the potential to cause fetal harm depending on the fetal stage of development and the magnitude of the radiation dose. However, published studies that describe Fludeoxyglucose F 18 Injection use in pregnant women have not identified a risk of drug-associated adverse fetal effects or radiation-related risks have been identified for diagnostic procedures involving less than 50 mGy, which represents less than 20 mGy fetal doses.

Clinical Considerations

- To decrease radiation exposure to the breastfed infant, advise a lactating woman to pump and discard breastmilk and avoid close (breast) contact with the infant for at least 9 hours after the administration of Fludeoxyglucose F 18 Injection.

8.4 Pediatric Use

- The safety and effectiveness of Fludeoxyglucose F 18 Injection in pediatric patients with epilepsy is established on the basis of studies in adult and pediatric patients. In pediatric patients with epilepsy, the recommended dose is 2.6 mCi. The optimal dose adjustment on the basis of body size or weight has not been determined.

9. DOSAGE AND ADMINISTRATION

- The dose of Fludeoxyglucose F 18 Injection should be minimized consistent with the objectives of the procedure, and the nature of the radiation detection devices employed.

10. hOW SUPPLIED

- Fludeoxyglucose F 18 Injection is a colorless solution. Each mL contains between 0.740 to 7.40 GBq/mL (20 to 200 mCi/mL) of Fludeoxyglucose F 18 Injection and 4.5 mg of sodium chloride and 0.1 to 0.5% w/v ethanol as a stabilizer. The pH of the solution is between 4.5 and 7.5. The solution is packaged in a multiple-dose glass vial and does not contain any preservative.

11. CLINICAL PHARMACOLOGY

11.1 Chemical Characteristics

- Fludeoxyglucose F 18 Injection is provided as a ready to use sterile, pyrogen free, clear, colorless solution. Each mL contains between 0.740 to 7.40 GBq/mL (20 to 200 mCi/mL) of 2-deoxy-2[18F]fluoro-D-glucose has the molecular formula of C6H12O6F with a molecular weight of 181.26, and has the following chemical structure:

\[\text{C}6\text{H}12\text{O}_6\text{F} \]

11.2 Physical Characteristics

- Fludeoxyglucose F 18 Injection has a physical half-life of 109.7 minutes and decays to Oxygen O 16 (stable) by positron decay. The principal photons useful for imaging are the dual 511 keV "annihilation" gamma photons, that are produced and emitted simultaneously in opposite direction when the positron collides with an electron (Table 2).

12. CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Fludeoxyglucose F 18 is a glucose analog that concentrates in cells that rely upon glucose as an energy source, or in cells whose dependence on glucose increases under pathophysiological conditions. Fludeoxyglucose F 18 is transported through the cell membrane by facilitative glucose transporter proteins and is phosphorylated within the cell to [18F]FDG-6-phosphate by the enzyme hexokinase. Once phosphorylated it cannot exit until it is dephosphorylated by glucose-6-phosphatase. Therefore, within a given tissue or pathophysiological process, the retention and clearance of Fludeoxyglucose F 18 reflect a balance involving glucose transporter, hexokinase and glucose-6-phosphatase activities. F 18 is used to assess glucose metabolism.
In comparison to background activity of the specific organ or tissue type, regions of decreased or absent uptake of Fludeoxyglucose F 18 reflect the decrease or absence of glucose metabolism. Regions of increased uptake of Fludeoxyglucose F 18 reflect greater than normal rates of glucose metabolism.

12.2 Pharmacodynamics
Fludeoxyglucose F 18 Injection is rapidly distributed to all organs of the body after intravenous administration. After background clearance of Fludeoxyglucose F 18 Injection, optional PET imaging is generally achieved between 30 to 60 minutes after injection. In cancer, the cells are generally characterized by enhanced glucose metabolism partially due to (1) an increase in activity of glucose transporters, (2) an increased rate of phosphorylation activity, (3) a reduction of phosphatase activity or, (4) a dynamic redistribution of subcellular glucose metabolism. The ratio of FDG-6-phosphate to FDG-6-phosphate uptake by the myocyte is metabolized immediately instead of being converted into glycogen. Under these conditions, phosphorylated Fludeoxyglucose F 18 accumulates in the myocyte and can be detected with PET imaging. In the brain, cells normally rely on aerobic metabolism. In epilepsy, the glucose metabolism varies. Generally, during a seizure, glucose metabolism increases. Interictally, the seizure focus tends to be hypometabolic.

12.3 Pharmacokinetics
Distribution: In four healthy male volunteers, receiving an intravenous administration of 3D seconds induction, the arterial blood level profile for Fludeoxyglucose F 18 decayed triexponentially. The effective half-life ranges of the three phases were 0.2 to 0.3 minutes, 10 to 13 minutes with a mean and standard deviation (STD) of 11.6 ± 1.1 min, and 80 to 95 minutes with a mean and STD of 88 ± 4 min. Plasma protein binding of Fludeoxyglucose F 18 has not been studied.

Metabolism: Fludeoxyglucose F 18 Injection is transported into cells and phosphorylated to [11C]-FDG-6-phosphate at a rate proportional to the rate of glucose utilization within that tissue. [11C]-FDG-6-phosphate is metabolized to 2-deoxy-2-[11C]fluoro-2-deoxy-D-glucose (2-deoxy-2-fluoro-D-phospho-D-mannose) (FDG-6-phosphate).

Fludeoxyglucose F 18 Injection may contain several impurities (e.g., 2-deoxy-2-chloro-D-glucose (CDG)). Biodistribution and metabolism of CDG are presumed to be similar to Fludeoxyglucose F 18 and would be expected to result in intracellular formation of 2-deoxy-2-chloro-D-glucose (CDG-6-phosphate) and 2-deoxy-2-chloro-6-phospho-D-mannose (CDG-6-phosphate). The phosphorylated deoxyglucose compounds are dephosphorylated and the resulting compounds (FDG, FOM, CDG, and CDM) presumably leave cells by passive diffusion. Fludeoxyglucose F 18 and related compounds are cleared from non-cardiac tissues within 3 to 24 hours after administration. Clearance from the cardiac tissue may require more than 96 hours. Fludeoxyglucose F 18 that is not involved in glucose metabolism in any tissue is then excreted in the urine. Elimination: Fludeoxyglucose F 18 is cleared from most tissues within 24 hours and can be eliminated from the body unchanged in the urine. Within 33 minutes, a mean of 3.9% of the administrated radioactive dose was measured in the urine. The amount of radiation exposure of the urinary bladder at two hours post-administration suggests that 20.6% (mean) of the radioactive dose was present in the bladder. Special Populations: The pharmacokinetics of Fludeoxyglucose F 18 Injection have not been studied in renal- or hepatically impaired or pediatric patients. Fludeoxyglucose F 18 Injection is eliminated through the renal system. Avoid excessive radiation exposure to this organ system and adjacent tissues. The effects of fasting, varying blood sugar levels, conditions of glucose intolerance, and diabetes mellitus on Fludeoxyglucose F 18 distribution in humans have not been ascertained (see Warnings and Precautions (5.2)).

13 NONCLINICAL TOXICOLOGY
13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
Animal studies have not been performed to evaluate the Fludeoxyglucose F 18 Injection carcinogenic potential, mutagenic potential or effects on fertility. 14 CLINICAL STUDIES
14.1 Oncology
The efficacy of Fludeoxyglucose F 18 Injection in positron emission tomography cancer imaging was demonstrated in 16 independent studies. These studies were prospectively evaluated the use of Fludeoxyglucose F 18 in patients with suspected or known malignancies, including non-small cell lung cancer, colorectal, pancreatic, breast, thyroid, melanoma, Hodgkin’s and non-Hodgkin’s lymphoma, and various types of metastatic cancers to lung, bone, and axillary nodes. All these studies had at least 50 patients and used pathology as a standard of truth. The Fludeoxyglucose F 18 Injection doses in the studies ranged from 200 MBq to 740 MBq with a median and mean dose of 370 MBq. In the studies, the diagnostic performance of Fludeoxyglucose F 18 Injection varied with the type of cancer, size of cancer, and other clinical conditions. False negative and false positive scans were observed. Negative Fludeoxyglucose F 18 Injection PET scans do not exclude the diagnosis of cancer. Positive Fludeoxyglucose F 18 Injection PET scans can not replace pathology to establish a diagnosis of cancer. Non-malignant conditions such as fungal infections, inflammatory processes and benign tumors have patterns of increased glucose metabolism that may give rise to false-positive scans. The efficacy of Fludeoxyglucose F 18 Injection PET imaging in cancer screening was not studied.

14.2 Cardiology
The efficacy of Fludeoxyglucose F 18 Injection for cardiac use was demonstrated in ten independent, prospective studies of patients with coronary artery disease and chronic left ventricular systolic dysfunction who were scheduled to undergo coronary revascularization. Before revascularization, patients underwent PET imaging with Fludeoxyglucose F 18 Injection (74 to 370 MBq, 2 to 10 mCi) and perfusion imaging with other diagnostic radiopharmaceuticals. Doses of Fludeoxyglucose F 18 Injection ranged from 74 to 370 MBq (2 to 10 mCi). Segmental, left ventricular, wall-motion assessments of asynergic areas made before revascularization were compared in a blinded manner to assessments made after successful revascularization to identify myocardial segments with functional recovery. Left ventricular myocardial segments were predicted to have reversible loss of systolic function if they showed Fludeoxyglucose F 18 accumulation and reduced perfusion (i.e., flow-metabolism mismatch). Conversely, myocardial segments were predicted to have irreversible loss of systolic function if they showed reductions in both Fludeoxyglucose F 18 accumulation and perfusion (i.e., matched defects). Findings of flow-metabolism mismatch in a myocardial segment may suggest that successful revascularization will restore myocardial function in that segment. However, false-positive tests occur regularly, and the decision to have a patient undergo revascularization should not be based on PET findings alone. Similarly, findings of a matched defect in a myocardial segment may suggest that myocardial function will not recover in that segment, even if it is successfully revascularized. However, false-negative tests occur regularly, and the decision to recommend against coronary revascularization, or to recommend a cardiac transplant, should not be based on PET findings alone. The reversibility of segmental dysfunction as predicted with Fludeoxyglucose F 18 PET imaging depends on successful coronary revascularization. Therefore, in patients with a low likelihood of successful revascularization, the diagnostic usefulness of PET imaging with Fludeoxyglucose F 18 Injection is more limited.

14.3 Neurology
In a prospective, open label trial, Fludeoxyglucose F 18 Injection was evaluated in 86 patients with epilepsy. Each patient received a dose of Fludeoxyglucose F 18 Injection in the range of 185 to 370 MBq (5 to 10 mCi). The mean age was 16.4 years (range: 4 months to 58 years; of these, 42 patients were less than 12 years and 16 patients were less than 2 years old). Patients had a known diagnosis of complex partial epilepsy and were under evaluation for surgical treatment of their seizure disorder. Seizures had been previously identified on ictal EEGs and sphenoidal EEGs. Fludeoxyglucose F 18 Injection PET imaging confirmed previous diagnostic findings in 16% (14/87) of the patients; in 34% (30/87) of the patients, Fludeoxyglucose F 18 Injection PET imaging provided new findings. In 32% (27/87), imaging with Fludeoxyglucose F 18 Injection was inconclusive. The impact of these imaging findings on clinical outcomes is not known. Several other studies comparing imaging with Fludeoxyglucose F 18 Injection results to subendocardial ECG and MRI and surgical findings supported the concept that the degree of hypometabolism corresponds to areas of confirmed epileptogenic foci. The safety and effectiveness of Fludeoxyglucose F 18 Injection to distinguish idiopathic epileptogenic foci from tumors or other brain lesions that may cause seizures have not been established.

16 HOW SUPPLIED/STORAGE AND DRUG HANDLING
Fludeoxyglucose F 18 Injection is supplied in a multi-dose, capped 30 mL and 50 mL glass container containing 0.740 to 7.40 MBq (20 to 200 mCi). In no carrier added 2-deoxy-2-[18F]fluoro-D-glucose, at end of synthesis, in approximately 15 to 50 mL. The contents of each vial are sterile, pyrogen-free and preservative-free.

NDC 40028-511-30; 40028-511-50

Receipt, transfer, handling, possession, or use of this product is subject to the radiocative material regulations and licensing requirements of the U.S. Nuclear Regulatory Commission, Agreement States or Licensing States as appropriate.

Store the Fludeoxyglucose F 18 Injection in an upright, leak-proof shielded container in a cool, dark, dry location for up to 48 hours. Store the Fludeoxyglucose F 18 Injection within 12 hours from the EOS time.

17 PATIENT COUNSELING INFORMATION
Instruct patients in procedures that increase renal clearance of radioactivity. Encourage patients to:
• drink water or other fluids (as tolerated) in the 4 hours before their PET study.

PETNET Solutions

PETNET Solutions
Legal information

On account of certain regional limitations of sales rights and service availability, we cannot guarantee that all products included in this brochure are available through the Siemens sales organization worldwide. Availability and packaging may vary by country and is subject to change without prior notice. Some/all of the features and products described herein may not be available in the United States.

The information in this document contains general technical descriptions of specifications and options as well as standard and optional features, which do not always have to be present in individual cases.

Siemens reserves the right to modify the design, packaging, specifications, and options described herein without prior notice.

Please contact your local Siemens sales representative for the most current information.

Note: Any technical data contained in this document may vary within defined tolerances. Original images always lose a certain amount of detail when reproduced.

“Siemens Healthineers” is considered a brand name. Its use is not intended to represent the legal entity to which this product is registered. Please contact your local Siemens organization for further details.

PETNET Solutions Inc. is a Siemens Healthineers company.