
References

© Siemens Healthcare Diagnostics Inc., 2017

Order No. 491 DX-CA1-160947.4C1-ADAO | 03-2017

Using the Dimension Vista LOCI Troponin I Assay for Accurate Early Diagnosis of AMI

On the basis of sensitivity and myocardial specificity, cardiac troponin (cTn) is the preferred sensitivity marker for diagnosis of acute myocardial infarction (AMI). Conventional cardiac troponin assays require 4–8 hours (t) for levels to become abnormal, peaking at 12–16 hours and declining over the subsequent 5–9 days.1-4 Newer, more sensitive cardiac troponin assays allow earlier detection, supporting more rapid triage of chest-pain patients. Use of a sensitive cardiac troponin I assay facilitates earlier detection and assessment of a change—important in the differentiation of an AMI related to myocardial ischemia from other causes of myocardial necrosis.1,2

Dimension, Vista, LOCI, and all associated marks are trademarks of Siemens Healthcare Diagnostics Inc. or its affiliates. All other trademarks and brands are the property of their respective owners.

Product availability may vary from country to country and is subject to varying regulatory requirements. For specific product availability information, please contact your local representative for availability.

Please contact your local representative for availability.

© Siemens Healthcare Diagnostics Inc., 2017

Order No. 491 DX-CA1-160947.4C1-ADAO | 03-2017

Using the Dimension Vista LOCI Troponin I Assay for Accurate Early Diagnosis of AMI

On the basis of sensitivity and myocardial specificity, cardiac troponin (cTn) is the preferred sensitivity marker for diagnosis of acute myocardial infarction (AMI). Conventional cardiac troponin assays require 4–8 hours (t) for levels to become abnormal, peaking at 12–16 hours and declining over the subsequent 5–9 days.1-4 Newer, more sensitive cardiac troponin assays allow earlier detection, supporting more rapid triage of chest-pain patients. Use of a sensitive cardiac troponin I assay facilitates earlier detection and assessment of a change—important in the differentiation of an AMI related to myocardial ischemia from other causes of myocardial necrosis.1,2
Diagnosis of Acute Myocardial Infarction

Acute myocardial infarction (AMI) is diagnosed when there is evidence of myocardial necrosis in a clinical setting consistent with acute myocardial ischemia. Necrosis has been defined by a significant rise or fall (serial change) of cardiac troponin, with at least one value above the 99th percentile upper limit of normal (ULN). Diagnosis also requires at least one other well-defined hallmark of AMI (evidence of ischemia, ECG and/or imaging abnormalities).

Cardiac troponin assays should strive for total imprecision of ≤ 10% coefficient of variation (CV) at the 99th percentile ULN of the reference population.

On the basis of imprecision and other performance characteristics, the Dimension Vista LOCI assay is a contemporary-sensitive assay which is guideline acceptable.

Clinical introduction of the sensitive cardiac troponin assays significantly increases the number of chest pain patients presenting with values exceeding the 99th percentile ULN as a result of causes other than AMI (see table).

In the appropriate clinical setting, serial testing can differentiate between increased troponin levels due to AMI and increased levels due to non-ischemic causes. Rising or falling patterns indicate AMI (NSTE-ACS) where, unchanged levels are found in chronic diseases.

However, changes in cardiac troponin concentrations are also observed in patients with atrial fibrillation or coronary artery disease; and, for other acute cardiac situations such as tachyarrhythmias, myocarditis, hypertensive crisis, and Takotsubo cardiomyopathy.

It is important to remember that interpretation of cardiac troponin values must always accompany clinical assessment, including evidence of ischemia by clinical symptoms, ECG, and imaging.

Elevations of Cardiac Troponin Values Due to Myocardial Injury

Injury Related to Primary Myocardial Ischemia
- Plaque rupture
- Intraluminal coronary artery thrombus formation

Injury Related to Supply/Demand Imbalance of Myocardial Ischemia
- Tachy-/bradyarrhythmias
- Aortic dissection or severe aortic valve disease
- Hypertrophic cardiomyopathy
- Severe respiratory failure
- Severe anemia
- Hypertension, with or without LVH
- Coronary spasm
- Coronary embolism or vasculitis
- Coronary endothelial dysfunction without significant CAD
- Injury not related to myocardial ischemia
- Cardiac contusion, surgery, ablation, pacing, or defibrillator shocks
- Rhadomyolysis with cardiac involvement
- Myocarditis
- Cardiotoxic agents

Multifactorial or Indeterminate Myocardial Injury
- Congestive heart failure: acute and chronic
- Stress cardiomyopathy
- Severe pulmonary embolism or pulmonary hypertension
- Sepsis and critical illness
- Renal failure
- Acute neurological disease, including stroke, or subarachnoid hemorrhage
- Infiltrative diseases (amyloidosis, hemochromatosis, sarcoidosis, and scleroderma)
- Strenuous exercise

Example algorithm for the diagnosis of AMI and risk stratification of patients with suspected NSTE-ACS using sensitive (s) and high-sensitivity (hs) assays

1. **First measurement at admission, 0 h**
 - (hs)-cTnl ≤ ULN
 - Chest pain < 6 h
 - Pain free: GRACE score < 140
 - No AMI. Discharge/stress testing (Rule out)
 - (hs)-cTnl > ULN
 - Chest pain > 6 h
 - + Sig. serial change
 - Highly abnormal + clinical presentation
 - Invasive management
 - Work up differential diagnoses
 - + No serial change

2. **Second (hs)-cTnl measurement—3 h later**
 - Pain free: GRACE score < 140
 - No serial change
 - No AMI. Discharge/stress testing (Rule out)
 - + Sig. serial change
 - Highly abnormal + clinical presentation
 - Invasive management
 - Work up differential diagnoses
 - + No serial change

Abbreviations: LVH: left ventricular hypertrophy; CAD: Coronary artery disease; GRACE score: Global Registry of Acute Coronary Events Risk Score; NSTE-ACS: Non-ST-elevation acute coronary syndrome; NSTEMI: non-ST-elevation myocardial infarction; ECG: electrocardiograph.